Lesy České republiky, s. p., Hradec Králové

VÝZKUMNÉ PROJEKTY
GRANTOVÉ SLUŽBY LČR

Souhrn projektu

Harmonizace vztahu populace bobra evropského a stavu prostředí

Řešitel
Institut ekologie a chovu zvěře, s.r.o.

Odpovědný řešitel:
Ing. František Havránek, CSc.

Spoluřešitelé:
Ing. Miloš Ježek
Ing. Martin Hučko
Ing. Bohumil Volf
doc. MVDr. Karel Bukovjan, CSc.

Praha 2010
1. OBSAH

1. OBSAH .. 2
2. CÍL ŘEŠENÍ... 4
3. ÚVOD... 4
4. LITERÁRNÍŘEŠENÍ... 5
 4.1. BIOLOGIE A EKOLOGIE DRUHU.. 5
 4.2. MANAGEMENT POPULACÍ A PROSTŘEDÍ BOBRA .. 10
 4.3. ŠKODY PŮSOBENÉ BOBREM.. 13
 4.4. SOUHRN... 16
5. METODIKA .. 17
 5.1. BIOLOGIE DRUHU.. 17
 5.1.1. Stanovení home range rodinné skupiny v rámci modelového území.................. 17
 5.1.2. Aktivity bobrů v rámci roční (církanuální) periody hodnocené dle vlivu na prostředí 17
 5.1.3. Aktivity bobrů v rámci denní periody (círka dání rytmy).. 18
 5.1.4. Vyhledání biodindikačních druhů s podobnými stanovištními nároky..................... 18
 5.2. STANOVITeNÍ NÁROK Y A VLIV BOBRA NA STANOVITeNÁE 19
 5.2.1. Vývoj prostorové struktury stanoviště po jejich osídlení bobrem...................... 19
 5.2.2. Vyhodnocení významu stanovištních charakteristik pro osídlení lokality bobrem... 19
 5.2.3. Druhové spektrum a charakteristika dřevin poškozených bobrem v modelové oblasti (podle výkazu uplatňovaných škod v rámci LZ Židlochovice 2003 – 2008)....................... 20
 5.2.4. Inventarizace pobytovéch znaků bobra v modelovém území Tvrdovice................. 20
 5.3. INVENTARIZACE VÝSKYTU BOBRA A TRENDY POPULACÍ V RÁMCI ČR 21
 5.3.1. Kvantitativní vývoj populace bobra v ČR... 21
 5.3.2. Vývoj areálu rozšíření populace bobra v ČR... 21
 5.3.3. Inventarizace a populací dynamika bobra v modelové oblasti.............................. 21
 5.3.4. Metody zjišťování počtu zvířat na stanovištích.. 22
 5.3.5. Včelové a poklavní složené skupin zvířat na jednotlivých stanovištích.............. 22
 5.3.6. Prognóza vývoje populace bobra v ČR a posouzení populace dynamiky mikropopulací bobra v ČR.. 22
 5.4. INVENTARIZACE ŠKOD BOBREM NA HOSPODÁRSKÝCH ČINNOSTECH ČLOVENKA V RÁMCI LZ ŽIDLOHOVICE A ČR.. 23
 5.4.1. Charakteristiky poškozených jedinců a porostů dřevin podle vykazovaných škod v modelové oblasti LZ Židlochovice.. 23
 5.4.2. Inventarizace škod bobrem na hospodářských činnostech člověka v rámci ČR........ 23
 5.5. PRÁKTIČKÁOEVĚRENÍ OPATřENÍ – OEVĚRENA METODIKA................................. 23
 5.5.1. Ověření jednotlivých technologií.. 23
 5.6. NÁVRH VZOROVÉHO MANAGEMENTU PROSTŘEDÍ A POPULACE BOBRA V MODELOVÉ OBLASTI TvrDOVICE.. 24
 5.6.1. Základní teze.. 24
 5.6.2. Management prostředí a populace bobra v modelové oblasti Tvrdovice prostřednictvím permanentního monitoringu... 24
 5.6.3. Tabulka hodnocení rizika poškození porostu bobrem – algoritmus pro modelování rizika škod.. 24
 5.7. LEGISLATIVNÍ ŘEŠENÍ PROBLÉMU... 25
6. VÝSLEDKY .. 26
 6.1. BIOLOGIE DRUHU.. 26
 6.1.1. Stanovení home range rodinné skupiny v rámci modelového území.................. 26
 6.1.2. Aktivity bobrů v rámci roční periody (církanuální) hodnocené dle vlivu na prostředí 26
 6.1.3. Aktivity bobrů v rámci denní periody (círka dání rytmy).. 27
 6.1.4. Vyhledání biodindikačních druhů s podobnými stanovištními nároky..................... 28
 6.1.5. Souhrn... 29
 6.2. STANOVITeNÍ NÁROK Y A VLIV BOBRA NA STANOVITeNÁE 30
 6.2.1. Vývoj prostorové struktury stanoviště po jejich osídlení bobrem...................... 30
6.2.2. Vyhodnocení významu stanovištních charakteristick pro osídlení lokality bobrem. .. 32
6.2.3. Druhové spektrum a charakteristika dřevin poškozovaných bobrem v modelové oblasti (podle vykazu uplatňovaných škod v rámci LZ Židlochovice 2003-2008) .. 33
6.2.4. Inventarizace pobytových znaků bobra v modelovém území Tvrdoonice .. 37
6.2.5. Souhrn .. 37
6.3. INVENTARIZACE VÝSKYTU BOBRÁ A TRENDY POPULACÍ V RÁMCI ČR .. 42
6.3.1. Kvantitativní vývoj populace bobra v ČR...................................... 42
6.3.2. Vývoj areálů rozšíření populace bobra v ČR .. 45
6.3.3. Inventarizace a populační dynamika bobra v modelové oblasti 48
6.3.4. Metody zjišťování počtu zvířat na stanovištích .. 49
6.3.5. Věkové a pohlavní složení skupin zvířat na jednotlivých stanovištích 52
6.3.6. Prognóza vývoje populace bobra v ČR a posouzení populační dynamiky populace bobra v ČR .. 52
6.3.6. Souhrn .. 54
6.4. INVENTARIZACE ŠKOD BOBREM NA HOSPODÁŘSKÝCH ČINNOSTECH ČLOVÉKA V RÁMCI LZ ŽIDLOCHOVICE A ČR ... 54
6.4.1. Charakteristiky poškozených jedinců a porostů dřevin podle vykazovaných škod v modelové oblasti LZ Židlochovice .. 54
6.4.2. Inventarizace škod bobrem na hospodářských činnostech člověka v rámci ČR .. 57
6.4.3. Vyhodnocení kartografického materiálu .. 61
6.4.4. Stanovení výše neuplatňovaných škod .. 61
6.4.5. Souhrn .. 61
6.5. PRAKTICKÉ OVĚŘENÍ OPATŘENÍ – OVĚŘENÁ METODIKA .. 62
6.5.1. Ověření jednotlivých technologií... 62
6.5.2. Metodika - Ochrana lesních nebo zemědělských kultur a vodohospodářských staveb před bobrem. .. 63
6.5.3. Souhrn .. 71
6.6. NÁVRH VÝROVNATÉHO MANAGEMENTU PROSTŘEDÍ A POPULACE BOBRA V MODELOVÉ OBLASTI TVRDOONICE ... 72
6.6.1. Základní teze .. 72
6.6.2. Management prostředí a populace bobra v modelové oblasti Tvrdoonice prostřednictvím permanentního monitoringu .. 72
6.6.3. Tabulka hodnocení rizika poškození porostu bobrem – algoritmus pro modelování rizika škod 75
6.7. LEGISLATIVNÍ ŘEŠENÍ PROBLÉMU .. 80
6.7.1. Současný stav legislativního zabezpečení problematiky .. 80
6.7.2. Legislativa nevyhovující ... 80
6.7.3. Legislativa a opatření absentující .. 80
6.7.4. Náhrada škod zvýšených na nesklizených polních plodinách a trvalých porostech činnosti bobra evropského.. 81
6.7.5. Návrh řešení úmyslu zvýšeného trvalé přítomnosti respektive existence sídla bobra evropského na stanovištích ... 82
6.7.6. Snížení stavu zvíře a zrušení jejího chovu – bobr evropský ... 83
6.7.7. Řešení možnosti zásahu do biotopu chráněného druhu ... 83

7. ZÁVĚRY A DISKUSE .. 85

8. PŘÍLOHY .. 88
Legislativa v rámci ČR ... 88

9. SEZNAM LITERATURY ... 94
2. CÍL ŘEŠENÍ

Cílem řešení výzkumného projektu „Harmonizace vztahu populace bobra evropského a stavu prostředí“ bylo přispět k poznání biologie tohoto druhu a k řešení problémů plynoucích z jeho existence a šíření v rámci České republiky, vzhledem ke střetům životních projevů bobra a hospodářských zájmů člověka. Jedná se především o poškozování lesních porostů ohryzem, kácením a podmáčením, eventuálně poškozování nebo znepřekážení vodohospodářských děl.

3. ÚVOD

Lokální problémy – střetové situace mezi hospodářskými zájmy člověka a přítomností bobra narůstají v důsledku spontánního šíření i reintrodukce. V ČR došlo k nárůstu stabilních populací bobra evropského. Bobr přitom patří mezi významné „krajinné inženýry“ – cíleně přetváří svoje stanoviště. To vyvolává v současné kulturní krajině (s omezeným potenciálem pro bobra vhodných stanovišť) některé negativní aspekty. Jedná se především o devastaci břehových porostů a porostů k nim přiléhajících, ničení cenných jedinců a skupin stromů, snižování průchodnosti vodních toků, nebo naopak poškozování vodohospodářských objektů, čímž je významně ohrožován nejen majetek, ale i životy lidí. Pastvu bobrů vznikají škody na zemědělských kulturách a vyhlabáváním nor je propadnutím ohrožována zemědělská a další mechanizace.

Prvním krokem řešení bylo studium biologie a především etologie bobra v návaznosti na stav ekosystémů, které osídluje.

Druhý krok řešení výše popsaného komplexu problémů vychází z ověření některých aspektů biologie druhu, stanovištních nároků a vlivu bobra na stanoviště. Následovala inventarizace výskytu bobra a posouzení trendů jeho populací a inventarizace škod bobrem.

Třetí krok spočíval v ověření některých ekotechnických opatření k redukci škod bobrem a jejich zakomponování do vzorového managementu prostředí a populace bobra.

Na závěr studie bylo vyhodnoceno legislativní řešení problému, včetně vytipování problémových okruhů.
4. LITERÁRNÍ REŠERŠE

4.1. Biologie a ekologie druhu

Ve dvacátých letech minulého století se situace změnila vlivem jejich zvýšené ochrany a programů na jejich zpětné zavedení, reintrodukce nebo repatriace, eventuálně posílení populací. Nárůst populací a rozšíření druhu, který je schopen měnit ekosystémy, vzbudil velký veřejný zájem.

O přehled stavu populací bobra se v roce 2002 pokusili HALLEY a ROSELL (2002). Kromě dvou druhů Castor fiber a Castor canadensis uvádí řadu subspecií, jejichž status není vždy zcela jasný. Jsou to: Castor fiber galliae (Francie), Castor fiber belaricus a Castor fiber osteropaeus, Castor fiber fiber (Skandinávie) a Castor fiber albicus. Stav bobrů v jednotlivých státech v roce cca 2000:

Bělorusko – nevyhuben, ochrana od roku 1922, repatriace nerealizována, populace 24 000 ks.

Čína – existuje reliktní populace u hranic s Mongolskem (Castor fiber biruli), možnost migrantů z repatriací v Rusku (C. fiber a C. canadensis).
Harmonizace vztahu populace bobra evropského a stavu prostředí

Česká republika – vyhuben 17. století, repatriace 1991 - populace 300 ks, migranti po Labi, migranti z Dunaje, repatrianti (Castor fiber belarusicus) z Polska.

Dánsko – vyhuben, ochrana -, reintrodukce – translokace (Castor fiber albicus), populace 12 ks.

Anglie – vyhuben 12. století, ochrana-, populace v zajetí (Castor fiber fiber).

Estonsko – vyhuben 1841, ochrana -, repatriace 1957 (Castor fiber belarusicus, Castor fiber osteuropaeus), povolen lov 20 % populace, populace 11 000 ks.

Francie – nevyhuben, ochrana 1909, repatriace 1959 – 1995, reliktní populace Castor fiber gallinae – translokace, repatriace Castor fiber canadensis, populace 7 000 – 10 000 ks.

Itálie – vyhuben 1541, ochrana -, repatriace plánovaná, populace 0.

Kazachstán – vyhuben ?, ochrana -, repatriace -, populace 1 000 ks.

Litva – vyhuben 1938, ochrana -, repatriace 1947 – 1959 (Castor fiber osteuropaeus, Castor fiber belarusicus), populace 100 000 ks.

Skotsko – vyhuben 16. století, ochrana -, repatriace v plánu, populace 0 ks.

Slovensko – vyhuben 1851, ochrana -, repatriace 1995 (imigrace z Rakouska, Castor fiber belarusicus z Polska), populace 500 ks.

Švédsko – vyhuben 1871, ochrana 1873, repatriace 1922 – 1939 (Castor fiber fiber), populace 100 000 ks.

Ukrajina – nevyhuben, ochrana 1922, repatriace x translokace, populace 6 000 ks.

Migrace bobrů je podle výše jmenovaného autora dvojího typu - po reintrodukci při vyhledávání vhodného stanoviště a po nasycení stanoviště. Populace bobrů se šíří do volného prostoru o 10 - 20 km a více ročně, přičemž migrace proti proudu toku jsou častější. Velikost home range je závislá na úživnosti. Délka toku v domovském okrsku bývá 150 - 700 m, podle jiných autorů 700 - 1400 m a další autoři uvádí 40 až 3000 m.

Mortalitou a migracemi bobrů v kulturní krajině se zabýval ZAHNER (2002), který konstatuje, že se druh přes úzkou genetickou základnu projevil jako velmi plastický a životaschopný (Bavarsko). Analýza mortality ukázala, že ze 45 uhynulých (31 dospělých, 13 subdospělých a 1 juvenilního), nejčastěji docházelo k úhynům v březnu a dubnu (58,7 %).

Z patnácti kusů, které bylo možno vyšetřit, pocházelo 7 kusů z období března - dubna. Z nich bylo 5 březích samic, jedna laktující i jeden subdospělý kus (samic). Nejčastější příčinou úmrtí byl střelba a vozy z vozidly (61 %). Pokud se týče šíření populace, bylo zjištěno, že počet obserovaných sčítáčích kvadrátů vzrostl za 4 roky z 16,7 % na 21,4 %. Rychlost šíření populace se pohybovala mezi 2,5 – 13 km ročně. Migrace podél řek jsou rychlejší než v oblastech se slepými rameny. Nejdělsí zjištěné migrace jedinců za rok činí 40 - 50 km (je však popisována i migrace 240 km). Velikost teritorii bobrů závisí na jejich úživnosti.
a hustotě populace. Na Issaru byla odhadována hustota osídlení až 2,7 bobra na 1 km², to je cca 6 bobrů na 1 km toku. Ve Švédsku jsou zjišťovány stavy poloviční. Přírůstek bobrů činí podle různých autorů 17,5 - 33 % populace. V Bavorsku postupuje populace do nových oblastí cca 4 km za rok.

V době povodní pak ustává teritoriální chování a jedinci se na zbytkových stanovištích nechovají agresivně. Po povodní opět nastupuje teritorialita.

KOSTKAN (2000) popisuje vliv bobra na stanoviště následujícím způsobem:
- příchod bobra na lokalitě,
- intenzivní kácení preferovaných dřevin (vrby a topolu),
- postupné zvyšování podílu tvrdých dřevin v porostu na úkor kácených vrby a topolu,
- začínají zmlazovat prvně kácené dřeviny (vrba a topol) s vyšší úspěšností než ostatní,
- zmlazené dřeviny nejsou intenzivně káceny (chemická obrana před herbivorem),
- rozšíření spektra kácených dřevin - náhradní potrava,
- odchod bobra z lokality z důvodu nedostatku preferované potravy,
- sukcese dřevin, v konkurenční výhodě jsou primárně zmlazující vrby a topoly,
- porost dospívá, dominance vrby a topolu je vyšší než na počátku cyklu,
- bobr se vrací zpět na lokalitě.

Dále autor uvádí zjednodušenou interpretaci funkce bobra v ekosystému:
- bobr evropský (Castor fiber), stejně jako bobr kanadský (Castor canadensis), jsou schopní velmi dobře se přizpůsobovat změněním podmínek kulturní krajiny, do které se přirozeně i za pomoci člověka šíří z refugíí,
- bobr má široké potravní spektrum a je schopen kácet a potravně i stavebně využívat většinu dřevin v okolí řek. Výrazně při tom preferuje rody vrba (Salix) a topol (Populus). Ostatní dřeviny jsou káceny náhodně nebo jako doplňkový zdroj,
- Vlivem velkého objemu kácených dřevin a selekce je nutné předpokládat postupnou změnu struktury břehového porostu.
- Vývoj porostu je dlouhodobý a závisí na poměru intenzity a druhotného spektra kácení a míry zmlazování a případným zaplavením a sedimentací v nádrži, pokud bobr staví hráze.

Bobr je natolik významný činitel v ekosystému, že jeho návrat do krajin vyvolává řadu rozsáhlých změn a tam, kde se opět vyskytuje, se stal se často diskutovaným tématem.

STOLLMANN, VOSKÁR (1989) vyhodnocovali historický vývoj populace bobra na Slovensku. Uvádí, že při obsazování nových území migruje bobr až 70 km mimo říční toky. Nejčastější jsou však, migrace do 5 km. Nejoblíbenější dřevinou pro pastvu bobrů jsou topoly, vrby a osiky, přičemž nejsilnější pokácená osika měla průměr pařezu 40 cm. Preferovány jsou však stromy s průměrem kmene do 15 cm a vzdálené od břehu do 7 m. Populace bobra na Slovensku činila v roce 1988 minimálně 8 - 10 ks.

STUBBE (1981) popisuje historii labského bobra. Uvádí, že bobr zpracuje 1 kg dřeva na hoblíny tisíců zkousnutí. V Německu se bobr vyvíjí i v oblastech, kde rostou téměř výhradně borovice. Jsou známy migrace až 175 km. Pokud se tehdejší velikosti teritorii uvažuje, že v zimě jsou redukována až na 10 - 200 m pobřežní linie. Mladý bobr váží 500-700 g, přičemž hlavním obdobím kladení je květenec. Koeficient reprodukce je 1 dospělý kus na 1 samici, přičemž jen 70 % samic v populaci reprodukuje. Na základě hlášení úhynů bobrů byly zjištěny následující faktory mortality (216 kusů v období 1950 - 1975): z důvodu škod utkáno 19 ks, silnice 10 ks, od ledu a přírodních úrazů 9 ks, onemocnění 3 ks (nitráty, silážní šťávy) a pneumonie 18 ks, hypertrofie orgánů apod. 7 ks, onemocnění trávicího traktu a periostitis (záčet okostice) 4 ks, ztráty povodňemi 7 ks, zabíti káceným stromem 2 ks, neobjasněné úhyny 48 ks.

FICEK (2003), mapoval v letech 2001 - 2002 preferenci dřevin bobry. Ukázalo se, že nejvyšší preference měl topol - 67,12 %, dále vrba - 25,92 % a zbytek ostatní. Preferovaná tloušťka stromu byla 2,6 - 6 cm (55 % všech případů), 27 % činily stromy o průměru do 25 cm. Potravní aktivity byly realizovány většinou do 10 m od břehu, průměrná výška pařezu byla 33 cm. Autor pak uvádí případy z literatury, kdy se bobři vzdávali za potravou až 100 m od břehu. Preference dřevin je dle něj určována nabídkou.

Každá bobří rodina obhospodařuje a brání vlastní teritorium. Rodinu vede rodičovský pár, se kterým žijí jejich potomci různého stáří. Bobři brání teritorium pomocí olfaktorických signálů, zvukových signálů a dotykov (zápasení, atd. …). Plácnutí ocasem slouží jako varovný signál pro členy rodiny. Chování bobrů bylo rozděleno do 3 skupin:
- agonistické: plácnutí ocasem, zápasení, značkování
- neutrální: chůze, stání, přijem potravy
- vyhýbavé: potopení, útěk.

Institut ekologie a chovu zvěře, s.r.o.

4.2. Management populací a prostředí bobra

Norský management se lépe chápe z pohledu dvou hlavních sloupců, které mají vysoké škody způsobené bobrem, mohou získat povolení k odstranění přehrad, hradů a obtížných jedinců i mimo dobu louvu. Metody pro odchyt živých bobrů jsou využívány mělo. Přestože existují problémy, úspěch norského řízení populace bobra spočívá v rostoucí porozumění ekologickému významu druhu a postupné transformaci chápání z pozice obtížného druhu na cennou lovnou zvěř. V případě jedinců, které působí problémy, existuje možnost jednoduché eliminace. V současné době se na management bobra vynášdá málo veřejných prostředků a u majitelů pozemků narůstá popularita lovu bobra.

Základní prvky norského managementu bobra - Převážná část norské legislativy bobra se zabývá tím, kdy a kde může být bobr loven. Dále organizací lovu, metodou stanovení kvót odlovu a rozdělení mezi vlastníky a tím, jak budou řešeny škody.

Vznik a rozdělení kvót odlovu - Obecně myslivecké rady na základě pozorování populáčního vývoje a stupně škod rozhodnou, kdy lov bobra začne. Někdy se provádí sčítání obydlených hradů, i když častěji je proveden hrubý odhad na základě různých informačních zdrojů, včetně

mortalita je v současnosti mezi subadultními zvířaty na silnicích při jejich migracích (dříve to byli vlci - cca 25 %) a u březích samic před kladením mláďat. Je důsledkem intenzivního vyhledávání potravy a tedy i migrací (40 % zjištěných úhynů).

NIETSCHE (2003), uvádí, že bobr se stává symbolem úspěšné ochrany přírody, na druhé straně však nelze zavírat o tom, že je velice inteligentní a schopni osidlovat i antropogenní zóny bez cest a silnic, možnosti migrací. Uvádí se, že bez vrby není bobr. Škody bobrem jsou malé, byly evidovány a státem hrazeny na ovocných stromech. Pro udržení genetické variability jsou občas vypouštěni noví jedinci. Bobr má sympatie veřejnosti.

Schopnost reprodukce nastupuje u jedinců ve věku 1,5 - 2,5 roku. Délka života bobra ve volnosti je cca 10 - 12 let. Velikost teritoria jedné rodiny je uváděna na 1,3 - 4,87 km toku (průměr 2,7 km). Migrace mladých jedinců vedou velmi často po proudu toku.
Dynamika populace je charakterizována např. nárůstem počtů. Roku 2000 bylo odhadováno v ČR 500 až 700 jedinců, roku 2006 bylo sčítáno 1 200 až 1 500 kusů. Metodika monitoringu početnosti bobrů je postavena na předpokladu, že v jedné rodní se vyskytuje 5-7 jedinců. Vstupními daty pro stanovení početnosti a struktury populace jsou pobytové znaky (5 skupin).

4.3. Škody působené bobrem

Problematicka škod bobrem a jeho management ve Francii, byl řešen úřadem Office National de la Chasse (ROULAND, 1993). Autor uvádí, že bobr je největším hladavcem tamější divoké fauny. Živí se vegetací a především stromky, které rozlomí a požírá z nich kůru, větve a listy. Jeho nejoblíbenějšími druhy jsou vřeby a topoly. Nepohrdne ale ani ovocnými stromy a tudíž může lokálně způsobit velké škody. Tak tomu je i v dolním a středním údolí řeky Rhony, kde se za posledních dvacet let s "oživením" tohoto druhu a zemědělskou intenzifikací na březích a kanálech této řeky rozšířil počet škod způsobených bobrem. Office National de la Chasse ve snaze o snížení škod přizpůsobil a zavedl účinné ochranné systémy, které byly posléze rozšířeny prostřednictvím sítě spolupracovníků akce "bobr". Analýza 275 případů škod (191 případů v období 1982 až červen 1982) ukazuje, že dřeviny (všechny možné druhy plus vinná réva) reprezentují 85 % případů škod. Mezi napadené hospodářské plodiny patří především slunečnice a kukuřice ve stádiu fruktifikace. Mezi nejvíce zasažené ovocné stromy patří jabloně, hrušná a broskvové.

Sítě spolupracovníků akce "bobr"

Na umělých zavlažovacích kanálech představují škody jeden případ poškození z pěti. Devět desetin škod se nachází v pásmu 20 metrů od břehů a pouze 2 % jsou zaznamenána ve vzdálenosti větší než 30 m.

Odpuzování bobrů pomocí repellentů Repelentní přípravky umožňují dočasnou ochranu kultuř a používají se na přístupových cestách k břehům nebo na vodních kanálech, kde se bobři vyskytují. Použití těchto prostředků spočívá v jejich rozprášení na okrajích kultur s možným rizikem poškození, nebo nátěrem na látkových nosičích umístěných na přístupových cestách. Pro rozprášení na okrajích kultur se doporučuje repelent prodávaný pod jménem "Aaprotect" (La Littorale). K nátěru dřevin u přístupových břehů je možné použít směsi složené z vody, topného nebo lněného oleje a písku. Jedná se o rychlou aplikaci, jejíž nevýhoda je ta, že má krátkou dobu působnosti a nemůže se od ní očekávat, že vyřeší problém poškození dřevin definitivně.

Účinnost ochranných systémů V rámci fungování sítě "bobr" zajišťují její spolupracovníci sledování aplikace nebo neaplikace doporučené ochrany při technickém zjištění škod. Sledování se provádí ve dvou kontrolách: první kontrola probíhá po 3 týdnech až 1 měsíci od zjištění škody a druhá po 6 týdnech až dvou měsících. Zjistilo se, že po uplynutí 2 měsíců se škody zastavily v 78 % případů. Ochrany byly nainstalovány v 56 % případů a z toho v 39 % v souladu s doporučením. Probíhá rovněž monitoring škod.

Pokud se týče charakteristik poškozených stromů, v oblasti Friedental byla zjištěna ztráta dřeva 10,9 m³. Nejsilnější poražený strom byla osika s průměrem východního ramena 29 cm. Průměr kmenu poražených stromů byl 8,2 cm. 58 % poškozených dřevin tvořila krušina, 15,7 % olše, 10,3 % bříza a další. Stezky bobrů od vody byly dlouhé 40 až 75 m. V oblasti Probstei byly zjištěny škody. V oblasti Wartenburg byly potravinové aktivity bobrů výrazně diferencovány a kolísaly v průběhu celého sledování. Byly zde napadeny i borovice, což není obvyklé, neboť bobři preferují listnaté. Borovice byly káceny, dopravovány ke břehu a zde ponechány. Objem poškozeného dřeva byl 7,34 m³, průměr stromů byl 3,8 cm. Ten byl ovlivněn právě mladými borovicemi. V práci jsou pak uváděny další diferencované škody bobrem podle stanoviště a nabídky dřevin. Z důvodu malé nabídky potravy v porostech lužního lesa s tvrdými dřevinami v blízkosti břehů zde bobr rozšířil spektrum své potravy o borovicí. Zkoumané oblasti Bergwitz a Friedenthal se z hlediska stavu zalesnění a intenzity kácení stromů bobry významně odlišují od předchozích oblastí. Počet kácených stromů činil v oblasti Bergwitz 787 ks. Nehledě na mírně sestupný trend jsou počty kmenů při jednotlivých kontrolách, v porovnání s předchozími vyšetřovanými oblastmi, poměrně
vyrovnané. Úbytek stromů způsobený bobrem se uskutečňoval vždy po jedincích, takže nevznikaly žádné větší paseky.

Kromě standardních škod bobry na březích, v nižších věkových třídách porostů, způsobují bobří ojedinělé škody na starších stromech s velkým průměrem (33 – 71 cm) ve výšetření výšce. V pokusném revíru Wartenburg bylo pokáceno 48 stromů s objemem 69,1 m³. V Probstei bylo 20 stromů s objemem 69,1 m³. Oproti tomu bylo v pro bobra běžné věkové třídy skáčeno ve Wartenburgu 963 a v Probstei 197 stromů. Objem těchto stromů byl však malý (Wartenburg 7,3 m³, Probstei 3,36 m³). V ostatních kontrolovaných oblastech nebylo kácení silných stromů registrováno.

V pěti pokusných revírech bylo poškozeno celkem 21 druhů dřevin. Někde to byly druhy 4, jinde dosáhlo spektrum 12 druhů. Počet poškozených druhů přitom koréluje s počtem druhů na stanovišti. Nejvíce jedinců bylo pokáceno u těch druhů, které byly na stanovišti zastoupeny nejvíce. Pokud bobří nemají k dispozici topoly, vrby a ošle konzumují jiné dřeviny. To může vést z lesnického hlediska k velkým škodám. Tam, kde nejsou listná čerstvá, bobry nasáhají dřeviny. Nejčastěji jsou káceny stromy s průměrem 7 cm. Další výzkumy ukázaly, že bobří preferují průměr stromů 1 - 11 cm (podle jiných autorů 5 - 15 cm nebo 1 - 9 cm, a další uvádí 2,2 cm). Tam kde nejsou slabé dřeviny, narůstají škody na stromech silných.

Délka stezek bobrů byla diferencována. V Probstei byla nejdelší stezka 250 m. Tyto vzdálenosti jsou ovlivněny potravní nabídkou a mohou se rok od roku měnit – prodlužovat se, ale i zkracovat.

Na základě výše uvedeného vyvozuji autoři následující doporučení: V oblastech obývaných bobry by mělo být zabráněno provádění těžby až k břehu vodního toku. Pro prevenci škod na porostu je vhodné podél vodního břehu zachovat, popř. nově zakládat plochy měkkých dřevin - ochranné pásky o šíři minimálně 30 m, s vysokým potenciálem schopností růstu pařezových výmladkov a s malými průměry kmenů. V porostech s negativním působením bobra je nutno vybrat cenné jedince, určené pro budoucnost a zajistit jejich ochranu provedením individuální mechanické ochrany. V oblastech obývaných bobry by měly být porosty dřevin na březích ponechány přirozené sukcesi.

ZAHNER a FREISIG (1998) uvádí, že štěrbení a atraktivita dřevin pro bobry pokázalo snížený zájem o jehličan (hodnoceno 33 druhů). Škála síly kmenů byla velmi široká do průměru 80 cm, ale 2/3 poškozených porostů bylo slabších než 5 cm. Maximum poškození se vyskytuje na podzim do 10 m od břehu. Napadané porosty jsou většinou husté. Potravní aktivity bobrů směřují k vytvoření holin cca 100 m², mohou se však vyskytovat i hektarové holiny vytvořené během jednoho roku. Stavbou hrází, které se vyskytují v Bavorsku je na jedné pětině osídlených lokalit a jsou vysoké až 2 m, vytváří bobří jezera o výměře několika hektarů. Zvýšením spodní vody však ovlivní se zvýšením potenciálu jehličnany.

Problematikou bobra v Bavorsku se zabýval SCHWAB (1992). Poslední břeň byl v Bavorsku uložen v roce 1867, o sto let později začal jeho návrat. V době vydání publikace se zde vyskytovalo až 1 000 bobrů ve 200 koloních. Centrum populace leží na Dunaji a na Innu, ale je předpoklad osídlení všech vhodných stanovišť. Místní obyvatelstvo zatím toleruje škody na cukrové řepě a kukuřici, problémy nastávají zhodnocení lokalit na lesních porostech a ničením zemědělských strojů a aut, která se propadávají do nor. Také poškozování povodňových hrází je problémem. Autor doporučuje 20 m naráznikové zóny podél břehů řek, není tam vytvářeno prostředí jen pro bobra, ale i pro jiné druhy.

Problematickou vývoje populace a stanovištními nároky se zabývala SIEBER (2002). Po vysázení 45 ks bobrů z Polska a 12 ks z Ameriky v roce 1976 – 1985, došlo v prvních
deseti letech k nárůstu populace na 100 - 150 ks. V roce 1997 bylo sčítáno 200 obsazených lokalit, to je nejméně 800 ks bobrů. Při řešení managementu populace je treba si položit základní otázky: jaký je stav populace, zda je dosaženo plné kapacity prostředí, jaká je prognóza na dalších 10 letech, kde vznikají problémy. Škody vznikají z 90 % do 20 m od břehu, přičemž jedno stanoviště obvykle poutá 4 ks. Pokud se týče potravních zdrojů, jsou bobři oportunisté. Káceny jsou především stromy do průměru 10 cm.

WEINZIERL, FROBEL (1998), konstatují, že v oblasti toku dolního Innu (Bavorsko) konzumují bobři 350 druhů rostlin, samozřejmě i hospodářské dřeviny včetně jehličnanů. Účelné je využívat mechanickou individuální ochranu. Škody je třeba řešit nebyrokraticky, jejich společným jmenovatelem je vzdálenost od břehu (do 20 m), škody na strojích a autech vznikají do 5 m od břehu.

4.4. Souhrn

• Biologie a ekologie druhu
 Nárůst populací a znovurozšíření druhu vzbudilo velký vědecký zájem. Bobr euroasijský (*Castor fiber*) a bobr severoamerický (*Castor canadensis*) se podle dosavadních poznatků nekrizí. Druhy se vyznačují vysokou stanovištní a potravní tolerantní. Vliv bobrů na stanoviště má pevná pravidla (maximum aktivit do 20 m od břehu atd.). Byly zjištěny zajímavé vzorce chování, které ukazují na značnou inteligenci bobrů.

• Management populace a prostředí
 Hlavní diference mezi autory spočívají v názoru na uplatňování odlovu živých bobrů nebo jejich odstřelu, a dále v názoru na realizaci nárazníkových zón podél břehů.

• Škody působené bobrem
 Všichni autoři konstatují střety zájmů místního obyvatelstva a činností bobra (štěpe na lese, zemědělství, vodohospodářských dílech). Uplatňování chemické ochrany porostů se jeví pouze jako podpůrné, dočasné řešení. Účinnost mechanických zařízení je velmi dobrá, stejně jako u elektrických ohradníků.
5. METODOKA

5.1. Biologie druhu

5.1.1. Stanovení home range rodinné skupiny v rámci modelového území

a) Terénním šetřením byla na vybraných lokalitách (Tvrdonice, Lanžhot, Strážnice, Šternberk) záznamem do porostních map hodnocena vzdálenost pobytového znaku od břehu v metrech a vypočteny průměrné hodnoty. Další stanovištní charakteristiky (kromě šířky toku a výskytu bylinného a křovinného patra, viz dále) nebyly v uvedených regionech hodnoceny.

b) Podle záznamu v porostních mapách byly odměřeny délky toku (hrany porostů) s pobytovémi znaky bobrů a vypočteny průměrné hodnoty.

c) Registrovány byly charakteristiky toku (šířka v m).

d) Registrována byla přítomnost bylinného patra nebo křovinného patra (minimum 30 %). Údaje byly zaznamenávány do připravených formulářů.

5.1.2. Aktivity bobrů v rámci roční (cirkanuální) periody hodnocené dle vlivu na prostředí

Pro mapování, bylo použito zařízení GPS COLORADO 300.

Popis modelových lokalit:

Folmava - Teplá Bystřice

Lesní závod Židlochovice – polese Tvrdonice - porost 926 D3

Modelové území (dále popsaná část polese Tvrdonice) a v ní pokusná lokalita - porost 926 D3 (dubová tyčkova až tyčovina, na břehu kanálu o šířce 4 m) se nachází v k.ú. Tvrdonice. V rámci modelového území o rozloze 800 ha, které je ohraničeno lesní cestou z Tvrdonice, jihozápadním směrem až k řece Moravě, dále tvoří jeho hranici tok řeky Moravy (po proudu)

Institut ekologie a chovu zvěře, s.r.o.
až k místu přetnutí toku komunikací č. 425 (Lanžhot – Kúty). Hranice území dále vede proti toku říčky Kyjovky, z Lanžhotu do Tvrdocí. Lokalita patří k přírodní lesní oblasti 35 - Jihomoravské úvalu (150 m n.m.). Zastoupení jednotlivých dřevin v rámci popsaného území je 46,4 % DB, 40,9 % JS, 5,1 % TP, 1,9 % JV, 0,07 % jehličany a ostatní. Nejvíce jsou zastoupeny věkové stupně I, II, III a X. Bohatě je zastoupeno bylinné patro.

Bolelouc - reka Morava, areál Hlávka

Modelová lokalita se nachází v k.ú. Dub nad Moravou u osady Bolelouc, na pravém břehu Moravy v přírodní lesní oblasti 34 – Hornomoravský úval (200 m n.m.). Z celkové rozlohy majetku 46 ha je jako les zařízen jen porost 276 Ab, plocha 2,29 ha, který byl v době zařízení tvořen přestárlou kmenovinou TP, OL, BR, SM, VR, věk 76, HS 198. Tento porost byl v zimě 2009/2010 smýcen a na jaře 2010 holina oplocena a zalesněna DB. Okolí zmíněného porostu tvořeného také pruhem nivy podél pravého břehu Moravy o šířce 10-30 m a navazující stráň tvořená sprašovým překryvem není lesnicky zařízenou, i když má velmi podobný charakter dřevin i vegetace. V horní části svahu jsou zanedbané sady ovocných dřevin.

Pro hodnocení významu charakteru stanovišť a porostů ze hlediska výskytu a škod bobrem byly sledovány další charakteristiky viz bod 5.2.2. metodiky.

5.1.3. Aktivity bobrů v rámci denní periody (cirkadiánní rytmy)

a) Prostřednictvím terénních šetření byly registrovány a mapovány pobytové znaky mimopotravních aktivit na vybraných třech modelových stanovištích (Folmava - Teplá Bystřice, Lesní závod Židlochovice – poleí Tvrdocí, porost 926 D3, slepé rameno, Bolelouc - reka Morava, areál Hlávka). Paralelně byly registrovány škody na porostech.

b) Vyhodnocení aktivit bobrů v rámci denních cirkadických rytmů

Šetření bylo realizováno v rámci modelové lokality (Folmava - Teplá Bystřice) prostřednictvím fotopastí značky Camera SG5SO, kvalita snímnání 5 megapixelů s LED diodovým přisvícením v infračerveném spektru, IR blesk (maximálně použito 5 zařízení současně, v režimu foto nebo video, s registrací času snímků). Monitoring stanoviště probíhal vždy minimálně ve 24 hodinových periodách a to na:

- stabilních kontrolních bodech,
- místech momentálních aktivit.

5.1.4. Vyhledání bioindikačních druhů s podobnými stanovištními nárození

Prostřednictvím výpočtu korelací (Excel – makro) byl hledán druh s obdobnými stanovištními nároky (Atlas rozšíření – kvadrátové mapování obojživelníci, ptáci, savci, víz literatura) a stabilizovaným areálem. Celkem bylo prověřeno 70 potenciálních druhů.

Informační vrstva rozšíření bobra byla překryta sčítacími kvadráty a hodnoty byly tabelárně uspořádány – připraveny k výpočtu. Výsledek posloužil jako pomůcka při odhadu dalšího vývoje areálu bobra v ČR.
5.2. Stanovištní nároky a vliv bobra na stanoviště

5.2.1. Vývoj prostorové struktury stanovišť po jejich osídlení bobrem

Hodnocení fotografií ve formátu GIS bylo realizováno:
- kartograficky
- graficky
- tabelárně (ha/%)

Kartografické vstupní materiály:
- základní mapa se situací pokusných ploch
- letecký snímek se situací pokusných ploch
- letecké snímky pokusních ploch se zákresem typů stanovišť
- letecké snímky redukovaných pokusních ploch se zákresem typů stanovišť

Pro ověření nejvhodnější velikosti kontrolních ploch byly realizovány vstupní testy. Jako nejvhodnější se ukázalo hodnocení pásma 50 m po obou březích toku, v délce stovek metrů.

5.2.2. Vyhodnocení významu stanovištních charakteristik pro osídlení lokality bobrem

Popis stanovišť - soubor lesních typů a produkčně ekologických charakteristik.

a) Pro popis stanovišť (lesních porostů) byly využity následující charakteristiky: označení porostu, kategorie lesa, hospodářský soubor, soubor lesních typů, věk, zakmenění, průměr ve výšovní výšce, druhová složenost a morfologická charakteristika stanoviště.

Byly popsány vybrané porosty v rámci Lesního závodu Židlochovice (Lanžhot, Tvrdonice), Lesní správy Strážnice a Lesní správy Šternberk. Byly vybrány porosty využívané bobry pro potravní aktivity a soubory soustředící nalevo, napravo a přes vodní tok, s porosty s pobytovými znaky.

Uvedené soubory jednotlivých charakteristik byly porovnány prostřednictvím výpočtu korelačního koeficientu (Excel-makro). Byla prověřována hypotéza, zda se vybrané porosty liší a jsou tedy bobrem selektovány dle dané charakteristiky porostu (viz výše).

b) Byly popsány vybrané porosty v rámci Lesního závodu Židlochovice (polesí Lanžhot, Tvrdonice), Lesní správy Strážnice a Lesní správy Šternberk. Hodnocena byla přítomnost
bylinného nebo křovinného patra v dvacetimetrovém pásu na každé straně toku. Při výskytu nad cca 30 % kontrolované délky, byla pro lokalitu vyznačena přítomnost uvedených stanovištních prvků. Registrávána byla šířka vodního toku v metrech.

5.2.3. Druhové spektrum a charakteristika dřevin poškozovaných bobrem v modelové oblasti (podle výkazu uplatňovaných škod v rámci LZ Židlochovice 2003 – 2008)

a) Pro posouzení potravního spektra bobrů v modelové oblasti LZ Židlochovice bylo použito souboru jedinců dřevin evidovaných pro uplatnění náhrad a vlastních šetření: Jedná se o evidované poškozené lesní porosty. V evidenci nejsou v plném rozsahu zachyceny spásané dřeviny nejnižších věkůvých tříd, pokud se nejedná o výsadbu. Tento soubor však popisuje měřitelný význam činností bobra pro lesní hospodářství. Tabelárně uspořádaná data (pro jednotlivá léta), byla zobrazena formou kruhových grafů a komentována. Pro finální hodnocení byly soubory jednotlivých let sumárně vyhodnoceny na základě výpočtu průměru.

b) Charakteristiky jedinců dřevin poškozených bobrem - zdrojem informací byla evidence škod pro uplatnění náhrad a vlastních šetření. Zjišťovány byly následující charakteristiky: věk, objem v m³, výška v m, průměr v cm ve výčetní výšce.

5.2.4. Inventarizace pobytových znaků bobra v modelovém území Tvrдонice

a) V zájmovém území Tvrдонice (800 ha) byly zkontrolovány terénním šetřením všechny vodní plochy a jejich okolí. Stanoviště byla hodnocena podle následující stupnice a byly vytvořeny mapy č. 1 - 4, intenzity tlaku bobrů na prostředí.

Stupnice intenzity výskytu pobytových znaků:
- bez pobytových znaků - neoznačené toky,
- ojedinělý výskyt pobytových znaků (skluz, nebo stopa, nebo jednotlivé ohlodané a kácené stromy do 40 let věku) – modré označené toky,
- intenzivní výskyt pobytových znaků (používaná hráz, nora, hrad, ohlodané a kácené stromy nad 40 let věku (jedinci), ohlodané a kácené stromy do 40 let věku (skupiny), ohlodané a kácené stromy do 40 let věku (plochy) – červeně označené toky.

b) Evidované pobytové znaky bobra:
- hráz,
- nora,
- skluz,
- stopa,
- ohlodané a kácené stromy do 40 let věku (jedinci),
- ohlodané a kácené stromy do 40 let věku (jedinci),
- ohlodané a kácené stromy do 40 let věku (skupiny),
- ohlodané a kácené stromy do 40 let věku (plochy).

Hlavní období monitoringu – kontrol rizikových porostů, byl počátek intenzivní exploatace dřevinného patra bobrem, tj. první dekáda října až ukončení intenzivní exploatace dřevinného patra, tj. druhá dekáda března.
5.3. Inventarizace výskytu bobra a trendy populací v rámci ČR

5.3.1. Kvantitativní vývoj populací bobra v ČR

Vstupní data Pro posouzení rozšíření bobra v období posledních pěti let (2003 – 2008, data za rok 2009 nebyla v době zpracování správy dostupná) bylo využito údajů myslivecké statistiky, včetně údajů o početnosti bobrů v jednotlivých honitbách (Mysl 1 - 01). Data byla získána z databáze Ústavu pro hospodářskou úpravu lesů (ÚHÚL) a údaje pro jednotlivé honitby byly kategorizovány, tj. nebyly vykazovány, ani zobrazovány konkrétní údaje z honiteb, ale byla zobrazena pásma počtu početných bobrů v jedné honitbě nebo na 100 ha: 0, 1 - 5, 6 - 10, 11 - 20, 21 - 50, 51 - 480+ ks.

Metodika sčítání Pro sčítání bobrů v honitbách nebyla státní správou stanovena speciální, jednotná metoda a jedná se proto o individuální odhady mysliveckých hospodářů, které jsou založeny jak na přímých pozorováních, tak na hodnocení výskytu pobytových znaků. Stavy bobrů byly uváděny k 31. 3. jednotlivých roků.

Zpracování dat
a) Sčítané počty bobrů v honitbách byly tabelárně uspořádány (z důvodu utajení osobních dat jsou v práci používána jen agregovaná data).

b) Databáze myslivecké statistiky v tabelární formě byla transformována do grafické formy, ve které bylo vylišeno pět typických oblastí výskytu bobra podle regionu a povodí osídlových řek: Pomoraví, Podyjí, Poodří, západní Čechy, severní Čechy. Vznikly tak grafy zobrazující početní vývoj populací ve jmenovaných regionech (povodích).

5.3.2. Vývoj areálu rozšíření populací bobra v ČR

a) Databáze myslivecké statistiky v tabelární formě byla transformována do formy kartografických informačních vrstev GIS, kvantitativního výskytu bobra v honitbách/100 ha pro jednotlivé roky. Tím bylo současně zobrazeno i plošné rozšíření bobra v ČR a oblastech.

b) Pro vyhodnocení prostorového šíření bobra v průběhu sledovaného období byla vytvořena informační vrstva – mapa, která využívá v prostředí GIS metody polygonu. To je, pro každý rok byly spojeny krajní honitby areálu rozšíření přímkou. Vzniklá plocha pak byla kvantifikována v km². Dále byl vývoj populace vyjádřen počtem osídlených honiteb v každém roce.

Vyhodnocení informačních vrstev, grafů a tabelárních dat bylo realizováno komentářem.

5.3.3. Inventarizace a populační dynamika bobra v modelové oblasti

V modelovém území jižní Moravy (LZ Židlochovice) byla denzita populace a její vývoj v čase vyjádřen počtem sčítaných bobrů v honitbě na 100 m vodních toků. Situace
v jednotlivých letech byla zobrazena kartograficky. K vodním tokům byly přiřazeny hranice honiteb, které byly označeny barevnou škálsou podle četnosti bobrů.

5.3.4. Metody zjišťování počtů zvířat na stanovištích

Pro řešení daného problému – stanovení počtů zvířat na stanovišti byly ověřovány tři metody:

a) registrace zvířat fotopastí (režim fotografie, režim video, režim infra). Pro řešení byly v závěrečné fázi vyhodnoceny jako nejvhodnější fotopasti CAMERA SG5SO (kvalita snímání 5 megapixelů s LED diodovým přisvícením v infračerveném spektru, IR blesk, 12 m),

b) stanovení počtů zvířat na základě mapování pobytových znaků (ohryz, kácení, hradu, nory, hráze, ochozy, skluzy, kanály),

c) sčítání zvířat a registrace jejich věku přímým pozorováním eventuálně videozáznamy.

Pro ověření metod byly vybrány tři stanoviště různého charakteru (popis viz výše):

a) Folmava Teplá Bystřice (rozloha lokality na proudící, úzkém toku cca 15 arů, home range až 200 m po břehu),

b) Lesní závod Židlochovice – polesí Tvrdonice (porost 926 D3, slepé rameno),

c) Bolelouc - řeka Morava areál Havelka.

5.3.5. Věkové a pohlavní složení skupin zvířat na jednotlivých stanovištích

Pro řešení daného problému – stanovení věkové a prostorové struktury skupiny bobrů na stanovišti byly ověřovány tři metodiky:

a) registrace zvířat fotopastí (režim fotografie, režim video, režim infra),

b) stanovení počtů zvířat na základě mapování pobytových znaků,

c) sčítání zvířat a registrace jejich věku přímým pozorováním eventuálně videozáznamy.

Pro ověření metod byla vybrána tři stanoviště různého charakteru: Folmava - Teplá Bystřice, Lesní závod Židlochovice – polesí Tvrdonice (porost 926D3, slepé rameno), Bolelouc - řeka Morava areál Havelka

5.3.6. Prognóza vývoje populace bobrů v ČR a posouzení populacní dynamiky mikropopulací bobrů v ČR.

a) Jako vstupní informace byl charakterizován nárůst populace bobrů v ČR v procentech a popsány populacní charakteristiky. Ty byly ověřeny v programu Vortex.

b) Byla zpracována prognóza vývoje populace bobrů v ČR pro dalších 5 let, nástrojem pro její formulování byly křivky, proložené dosavadními parametry populacní dynamiky dle Mysl 1-01 (viz výše). Konstruována byla alternativně křivka lineární a exponenciální.
5.4. Inventarizace škod bobrem na hospodářských činnostech člověka v rámci LZ Židlochovice a ČR

5.4.1. Charakteristiky poškozovaných jedinců a porostů dřevin podle vykazovaných škod v modelové oblasti LZ Židlochovice

5.4.2. Inventarizace škod bobrem na hospodářských činnostech člověka v rámci ČR

Vstupní data

a) Pro vytvoření potřebných databází (poskytnutí zdrojových dat) poškozování lesních ekosystémů, zemědělských kultur a technických zařízení byly vytipovány následující organizace:
 - Lesy České republiky, s. p. – lesní správy (LS) a lesní závody (LZ),
 - Lesy České republiky, s. p. – správy toků - oblasti povodí (ST – OP),
 - Podnáky povodí, s. p.,
 - Zemědělská vodohospodářská správa,
 - Krajské úřady.

b) Databáze poskytnuté výše uvedenými organizacemi byly hodnoceny zvlášť, vzhledem k tomu, že prostá sumarizace dat by mohla přinést zdvojené započítávání některých údajů (např. škody vykazované Lesy České republiky, s.p. a škody vykazované krajskými úřady). Získané výstupy ve formě popisu případu a jeho finančního ohodnocení je třeba posuzovat jako informativní a minimální.

c) Vzhledem k tomu, že na některých lokalitách se škody bobrem nevyskytují každý rok a termín vzniku škody není vždy jistý, bylo ve všech případech hodnoceno pětileté období 2004 - 2008, se srovnáním prvního a posledního roku, jako ukazatele gradace.

d) Pro kartografické zobrazení lokalizace škod byla využita elektronická forma dřívějších okresů. K tomu bylo přikročeno z důvodu unifikace zobrazení, ale především z důvodu nedostupnosti regionálního dělení republiky jednotlivými subjekty v elektronické formě.

5.5. Praktické ověření opatření – ověřená metodika

5.5.1. Ověření jednotlivých technologií

Na základě analýz byl ve druhém roce řešení navržen a modelově realizován na jedné lokalitě vzorový management prostředí a byla ověřována ekotechnická opatření na ochranu vybraných jedinců a skupin nebo částí porostů.
a) Individuální ochrana repelenty: Morsuvin, Aversol, kontrolní skupina – aplikováno na polese Tvrdonice (926D3). Jedinci poškození před počátkem pokusu byli registrováni pomocí GPS. Při periodických kontrolách byly změny opět registrovány pomocí GPS.

b) Individuální ochrana mechanická: ovázání pletive m, ovázání rákosem (Tvrdonice).

c) Ochrana porostu: oplocenky (Tvrdonice).

d) Technologie pro snížení hladiny nad hrázemi.

e) Příkrmování - (Folmava - Bystřice).

f) Aplikace pachového repelentu Kornitol a Hagopur (Tvrdonice).

g) Převzetí dokumentace z literatury (viz brožura Bobr v současné krajině).

5.6. Návrh vzorového managementu prostředí a populace bobra v modelové oblasti Tvrdovice

Cílem řešení projektu bylo eliminovat v maximální možné míře střetové situace mezi vlivem populace bobra na stanoviště a zájmy lesního hospodářství (při odpovídající efektivitě opatření).

5.6.1. Základní teze

Základní teze, ze kterých vycházela konstrukce modelového projektu, byly formulovány na základě provedených řetězích v kapitolách 5.1. – 5.6. a literární rešerše.

5.6.2. Management prostředí a populace bobra v modelové oblasti Tvrdovice prostřednictvím permanentního monitoringu

Cílem navrženého managementu bylo snížení škod bobrem, při početně i prostorově stabilizované populaci.

a) Byly doporučeny nástroje redukce škod.

b) Byla doporučena metodika monitoringu stavu prostředí a populace.

c) Byla doporučena metodika výběru rizikových porostů z porostních map.

5.6.3. Tabulka hodnocení rizika poškození porostu bobrem – algoritmus pro modelování rizika škod

Byl konstruován jednoduchý nástroj podporující posouzení rizika vzniku škod na vybraných lokalitách. Jedná se o algoritmus, ve kterém byly vybraným stanovištním charakteristikám (zakmenění, průměr kmenu na pařezu, věk porostu, výskyt měkkých dřevin, přítomnost bylinného patra, přítomnost křovinného patra, šířka toku, bioindikační druhy) přiřazeny váhy
rizika vzniku škod a vyjádřeny procentuálně. Sčítáním vah jednotlivých (přítomných) stanovištních charakteristik pak byla definována pravděpodobnost osídlení stanoviště bobry (pokud jsou v oblasti přítomni), s následným vznikem škod.

5.7. Legislativní řešení problému

a) Byl vyhodnocen současný legislativní rámec problému (posouzení znění legislativních předpisů, konzultace se zástupci MZe, MŽP, účast na mezirezortních jednáních).

b) Byla identifikována nevyhovující místa současné legislativy.

c) Byly identifikovány legislativně nezajištěné praktické problémy.

d) Byly formulovány standardní postupy řešení škod bobrem a jeho managementu v rámci současné legislativy.
6. VÝSLEDKY

6.1. Biologie druhu

6.1.1. Stanovení home range rodinné skupiny v rámci modelového území

Pro stanovení hranic domovského okrsku rodiny bobrů bylo využíváno pobytových znaků, které byly limitovány liníí toku a výskytem pobytových znaků v porostu (vzdáleností od břehu).

a) Využívání potravních zdrojů ve vazbě na vzdálenost od břehu

Pro hodnocení byly v rámci Lesního závodu Židlochovice (polesí Tvrdonice, Lanžhot) využity pobytové znaky (potravní aktivity) ve 44 porostech. V rámci Lesní správy Šternberk to bylo 6 porostů a v rámci lesní správy Strážnice to bylo 13 porostů. V souladu s literárními údaji bylo konstatováno, že vážený průměr šířky využívané pobřežní linie, zjištěný v rámci uvedených lesních správ a lesního závodu, je 24,5 m. Dle sdělení lesnického personálu se však objevují znaky potravních aktivit maximálně do 100 m od pobřežní linie.

b) Délka pobřežní linie využívané pro potravní aktivity na jednom stanovišti (jedince nebo rodiny).

Pro hodnocení byly v rámci LZ Židlochovice (polesí Tvrdonice, Lanžhot) využity pobytové znaky (potravní aktivity) ve 44 porostech. V rámci lesní správy Šternberk to bylo 6 porostů a v rámci lesní správy Strážnice to bylo 13 porostů. Vážený průměr bobrů využívané délky pobřežní linie, zjištěný v rámci uvedených lesních správ a lesního závodu je 212,9 m (maximálně 580 m).

6.1.2. Aktivity bobrů v rámci roční periody (církanuální) hodnocené dle vlivu na prostředí

a) Vyhodnocení vlivu bobrů na porosty dřevin v závislosti na jejich potravních aktivitách.

Vyhodnocení aktivit bobrů v rámci roční periody, na základě registrací fotopastí a přímým pozorováním, nebylo realizováno. Důvodem je diametrální rozdílnost možnosti registrace bobrů ve vegetační i mimovegetační periodě.
6.1.3. Aktivity bobrů v rámci denní periody (cirkadiánní rytmy)
Vyhodnocení mimopotravních aktivit bobrů (hrady, nory, kanály)

a) Mapování mimopotravních pobytových znaků (Tvrdonice, Bolelouc, Folmava-Bystřice)

Byly ověřeny závislosti mezi výskytem pobytových znaků (nora, skluž, hrad) a vznikem škod, respektive okusem a kácením stromů. Závislost byla vyjádřena procentuálně. Přítomnost nory vyvolala vznik škod ve 40,1 % případů (n=27), skluž vyvolal škody v 83,2 % případů (n=232), hrad signalizoval škody na dřevinách ve 100 % případů. V případě nor se vždy nepodařilo ověřit jejich osídlení.

Foto č.1: Vsuk do nory bobra
b) Vyhodnocení cirkadiánních rytmů v rámci jednodenní periody bylo realizováno jednak přímým pozorováním a jednak podle záznamů na fotopastech (viz dříve).

Bobr je většinou soumračný a noční tvor, i když denní aktivity nejsou výjimečné. Jednotlivé aktivity se mění především v závislosti na stanovišti a roční periodě, ale i na dalších faktorech. Na základě zprůměrování hodnot lze popsat denní aktivity v rámci roční periody, tak jak je uvedeno v tabulce č. 1.

Tab. č.1: Průměrné aktivity bobra v rámci denní periody a roční periody

<table>
<thead>
<tr>
<th>měsíc</th>
<th>perioda</th>
<th>aktivity</th>
<th>perioda</th>
<th>aktivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>leden-únor</td>
<td>8:00-16:30</td>
<td>4 %</td>
<td>16:30-8:00</td>
<td>96 %</td>
</tr>
<tr>
<td>březen-duben</td>
<td>6:30-18:00</td>
<td>13 %</td>
<td>18:00-6:30</td>
<td>87 %</td>
</tr>
<tr>
<td>květen-červen</td>
<td>5:30-20:30</td>
<td>18 %</td>
<td>20:30-5:30</td>
<td>82 %</td>
</tr>
<tr>
<td>červenec-srpen</td>
<td>5:00-21:00</td>
<td>10 %</td>
<td>21:00-5:00</td>
<td>90 %</td>
</tr>
<tr>
<td>září-říjen</td>
<td>6:30-19:00</td>
<td>7 %</td>
<td>19:00-6:30</td>
<td>93 %</td>
</tr>
<tr>
<td>listopad-prosinec</td>
<td>7:00-16:30</td>
<td>22 %</td>
<td>16:30-7:00</td>
<td>78 %</td>
</tr>
</tbody>
</table>

Vyhodnocení cirkadiánních aktivit v „jemyším“ (např. v dvouhodinovém) členění nebylo realizováno vzhledem potřebám řešení a vzhledem k rozsahu souboru vstupních dat. Cílem šetření bylo využít data o cirkadiánních aktivitách, pro stanovení období vhodných pro přímá pozorování bobrů. Nejvýhodnější jsou zřejmě soumračné fáze dne a svítání, jak je uvedeno v tabulce č. 2.

Tab. č.2: Denní periody nejvhodnější pro přímá pozorování bobrů

<table>
<thead>
<tr>
<th>měsíc</th>
<th>perioda</th>
<th>perioda</th>
</tr>
</thead>
<tbody>
<tr>
<td>leden-únor</td>
<td>6:00-9:00</td>
<td>15:30-18:30</td>
</tr>
<tr>
<td>březen-duben</td>
<td>4:30-7:30</td>
<td>17:00-20:00</td>
</tr>
<tr>
<td>květen-červen</td>
<td>3:30-6:30</td>
<td>19:00-22:00</td>
</tr>
<tr>
<td>červenec-srpen</td>
<td>3:00-7:00</td>
<td>19:30-22:00</td>
</tr>
<tr>
<td>září-říjen</td>
<td>4:00-7:30</td>
<td>18:00-21:00</td>
</tr>
<tr>
<td>listopad-prosinec</td>
<td>5:00-8:00</td>
<td>15:30-19:00</td>
</tr>
</tbody>
</table>

6.1.4. Vyhledání bioindikačních druhů s podobnými stanovištními nároky

Výpočtem korelací byl hledán druh s obdobnými stanovištními nároky (atlasy rozšíření - kvadrátové mapování obojživelníků, ptáků, savců - viz literatura) a stabilizovaným areálem. Výsledek posloužil jako pomůcka při odhadu dalšího vývoje areálu bobrů v ČR.

Prvním krokem řešení bylo proložení informačních vrstev „kvadrátové“ mapování vybraných druhů obojživelníků a ptáků s předpokládanými, podobnými stanovištními nároky jako má bobr s kvadráty obsazenými bobrem. Druhým krokem bylo tabelární uspořádání dat a třetím krokem byl výpočet korelačního koeficientu výskytu bobrů a vybraných sedmdesáti druhů. Relativně nejvyšší shoda byla zjištěna u bobrů a skokana krátkonohého (0,27), chřástala kropenatého (0,26) skokana krátkonohého (0,24) a sluky lesní (0,19).
6.1.5. Souhrn

- Zjištěná vzdálenost podél vodního toku, kterou bobři využívali, byla v průměru do 24,5 m (max. 100 m). To se shoduje s všeobecně udávanými hodnotami. Aktivně využívaná délka břehu toku jednou rodinou byla 213 m (max. 580 m), tento údaj se podle literárních údajů jeví jako nízký.

- Jako průměrný termín ukončení intenzivní exploatace dřevinného patra byla stanovena dru há dekáda března. Počátek intenzivní exploatace dřevinného patra bobrem byl stanoven na první dekádu října.

- Nejsilněji je vznik škod na porostech vázan na přítomnost hradu (100 %) a sklu zu (83,2 %).

- Relativně nejvyšší shoda stanovištních nároků byla zjištěna u bobra a skokana skřehotavého (0,27), chřástal a kropenatého (0,26) skokana krátkonohého (0,24) a sluky lesní (0,19).

- Na základě posouzení stabilizovaných areálů druhů s podobnými stanovištními nároky jako má bobr, lze předpokládat, že vhodné stanovištní podmínky, které budou bobrem osídleny, se nachází především v oblasti Třeboňské a Českobudějovické pánve. Tam se zřejmě v určitém časovém horizontu propojí populace bobra, která se šíří směrem z povodí Dyje, s populací západočeskou. Je evidentní, že hranice areálu obou těchto populací se posouvají právě tímto směrem (ovšem z opačných stran). Dále lze očekávat šíření bobra v oblasti povodí Ohře a východně pak v Polabí.
6.2. Stanovištní nároky a vliv bobra na stanoviště

6.2.1. Vývoj prostorové struktury stanoviště po jejich osídlení bobrem

Dle metodiky bylo v programu GIS hodnoceno 14 lokalit (v první fázi 4 lokality), ve druhé fázi řešení byla metodika upravena. Přiložený graf č.1 prezentuje situaci na Tvrdonicku, kde bylo hodnoceno 10 lokalit.

Z grafu je zřejmé, že v oblasti výskytu bobrů došlo ve sledovaném období 1990 – 2006 k posunu zastoupení základních morfologických charakteristik stanoviště (změny druhů pozemků) podél toků. Došlo ke snížení plochy lesa z 510 521 m² na 488 382 m² (-4,3 %), v případě bezlesí došlo k ještě výraznějšímu poklesu výměry z 41 054 m² na 29 627 m² (-27,8 %) a v případě vodní plochy došlo naopak k nárůstu z 11 013 m² na 30 438 m² (+176,4 %).

Obr. č.2 a 3: Lokalizace analyzovaných ploch v mapě a leteckém snímku

Zobrazené plochy byly využity pro výběr nejvhodnější výměry kontrolní lokality.
Obr. č.4: Změny druhů pozemků

Graf č.1:

Z grafu č. 1 je zřejmý nárůst vodních ploch na lokalitách osídlených bobrem.
Harmonizace vztahu populace bobra evropského a stavu prostředí

Tab. č. 3: Změny druhů pozemků (m²)

<table>
<thead>
<tr>
<th>pozemek</th>
<th>les</th>
<th>neles</th>
<th>voda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>510521</td>
<td>41054</td>
<td>11013</td>
</tr>
<tr>
<td>2003</td>
<td>509454</td>
<td>42985</td>
<td>12417</td>
</tr>
<tr>
<td>2006</td>
<td>488382</td>
<td>29627</td>
<td>30438</td>
</tr>
</tbody>
</table>

6.2.2. Vyhodnocení významu stanovištních charakteristik pro osídlení lokality bobrem.

a) Popis stanoviště - porostů dle souborů lesních typů a produkčně ekologických charakteristik.

V rámci celé ČR byl realizován průzkum výskytu bobrů a prezentace pobytového znaku – okusu a kácení stromů v lesních porostech LČR (byly osloveny všechny lesní správy s registrovaným výskytu bobrů). Na základě tohoto vstupního šetření byly pro vlastní hodnocení vybrány lesní správy Šternberk, Strážnice a Lesní závod Židlochovice (polesí Tvrdonice a Lanžhot), a zde byly popsány porosty s registrovanými pobytovémi znaky bobrů a porosty sousední – nepoškozované. Následně byla pomocí výpočtu korelačního koeficientu (EXCEL-makro) ověřována hypotéza o rozdílném charakteru porostů, bobrem obsazených a sousedních porostů bobrem nevyužívaných. Pro jednotlivé charakteristiky bylo zjištěno:

- **kategorie lesa** - rozdíl mezi porosty využívanými a nevyužívanými není průkazný (r = 0,99)
- **hospodářský soubor lesa** - rozdíl mezi porosty využívanými a nevyužívanými není průkazný (r = 0,91)
- **soubor lesních typů** - rozdíl mezi porosty využívanými a nevyužívanými není průkazný (r = 0,86)
- **bonita** - rozdíl mezi porosty využívanými a nevyužívanými není průkazný (r = 0,97)
- **zakmenění** - rozdíl mezi porosty využívanými a nevyužívanými není průkazný (r = 0,96)
- **včer porostu** - rozdíl mezi porosty využívanými a nevyužívanými je zřetelný (r = 0,47)
- **průměr kmene ve výšní výšce** - rozdíl mezi porosty využívanými a nevyužívanými je zřetelný (r = 0,46)
- **dřevina** - rozdíl mezi porosty využívanými a nevyužívanými není průkazný (r = 0,96)

b) Popis stanoviště dle dalších charakteristik (šířka vodního toku, křovinné patro, atd.).

Vyhodnocením dalších stanovištních charakteristik se ukázalo, že na lokalitách využívaných bobrem se vždy vyskytuje bylinné patro (kopřiva, netýkavka, ostružina, atd.) a křovinné patro je zastoupeno alespoň na 50 % plochy (střecha obecná, bez černý, růže šípková, hloh obecný, zmlazení listnáčů, atd.).
Šířka vodní plochy na stanovištích byla v průměru 4,1 m (včetně ramen řeky Moravy). V případě vyloučení řeky Moravy a jejích hlavních ramen průměrná hodnota šířky vodní plochy klesla na 3,1 m.

6.2.3. Druhové spektrum a charakteristika dřevin poškozovaných bobrem v modelové oblasti (podle výkazu uplatňovaných škod v rámci LZ Židlochovice 2003-2008)

a) Zastoupení druhů dřevin v jednotlivých létech šetření

Zastoupení jednotlivých druhů dřevin v jednotlivých letech zobrazují grafy č. 2 až 7. Z kruhových grafů vyplývá, že v roce 2003 (graf č. 2) na počátku šetření tvořily hlavní část potravního spektra topoly (42 %) a vrby (31 %), dále byl významněji zastoupen jasan, bříza a osika.

V roce 2004 (graf č.3) bylo opět v největší měře zaznamenáno poškozování topolu (32 %), stejně jako dubu (32 %) a jasana (16 %), zatím co zastoupení vrby pokleslo na pouhé (8 %), stejně jako v případě jilma.

Naopak v roce 2005 (graf č.4) došlo opět ke zvýšenému příjmu vrby (31 %), i když nejvyšší zastoupení v hodnoceném souboru měl i v tomto roce topol (38 %), dalšími intenzivně přijímanými dřevinami byl dub a jasan. Ostatní dřeviny z vykazovaného souboru prakticky vymizely.

Rok 2006 (graf č.5) je typický zvýšeným tlakem na duby (42 %), sníženým napadením topolů (23 %) a dále jasana (15 %) a vrby (12 %).

V roce 2007 (graf č.6) byly opět vykázány nejvyšší škody na dubech (36 %), topolech (32 %) a dále vrbách (14 %), jasane (7 %) a dalších.

V roce 2008 (Graf č.7) opět převládlo poškozování topolu (76 %), druhem s druhým nejvyšším zastoupením byl dub, i když jeho objem podstatně poklesl (9 %) a dále pak jasan (9 %) a vrba (3 %), stejně jako jilm (3 %).

V celkovém hodnoceném souboru druhů dřevin poškozovaných bobrem se vyskytovalo 40 % topolu, 16 % vrby, 12 % jasana, 24 % dubu, 3 % jilma, 3 % olše, 1 % břízy, 1 % osiky. Na jiných lokalitách však bylo zjišťováno například i intenzivní poškozování boborice.
Graf č.2:

Vykázané zastoupení druhů dřevin poškozených bobrem - 2003

![Diagram](image)

Z grafu č. 2 je zřejmá převaha využívání topolu a vrby bobry v roce 2003.

Graf č.3:

Vykázané zastoupení druhů dřevin poškozených bobrem - 2004

![Diagram](image)

Z grafu č. 3 je zřejmé, že v roce 2004 byl dub a topol zastoupen v potravě bobra na srovnatelné úrovni, z dalších dřevin to byl především jilm a vrba.
Graf č. 4:

Vykázané zastoupení druhů dřevin poškozených bobrem - 2005

Z grafu č. 4 je zřejmá převaha využívání topolu, dubu a vrby bobry v roce 2005.

Graf č. 5:

Vykázané zastoupení druhů dřevin poškozených bobrem - 2006

Z grafu č. 5 je zřejmá převaha využívání dubu, topolu, jasanu a vrby v roce 2006.
Graf č.6:

Vykázané zastoupení druhů dřevin poškozených bobrem - 2007

Z grafu č. 6 je zřejmá převaha využívání dubu, topolu, vrby a jasanu bobry v roce 2007.

Graf č.7:

Vykázané zastoupení druhů dřevin poškozených bobrem - 2008

Z grafu č. 7 je zřejmá převaha využívání topolu bobry nad ostatními dřevinami roce 2008.
b) Charakteristiky jedinců dřevin poškozených bobrem

Byly vyhodnoceny základní charakteristiky vybraných jedinců stromů, které byly poškozeny a zničeny bobry. Byly specifikovány druhem dřeviny, průměrem ve výčetní výšce a objemem v m³. Ukázalo se, že v případě vrby byly využívány stromy s průměrem 37,3 cm, průměrnou výškou 14,7 m a objemem 1,02 m³ (n = 67). Skupina hodnocených topolů měla průměr kmene ve výčetní výšce 56,3, průměrná výška byla 23 m a objem 3,45 m³ (n = 144). V případě jasana byl naměřen průměr kmene ve výčetní výšce 22,5 m, výška 10,0 m a průměrný objem 0,22 m³ (n = 4).

Je zřejmé, že uvedené hodnoty se liší podle druhu dřevin. V případě vrby byl průměr kmene ve výčetní výšce o 19,0 cm menší než v souboru topolů (tj. o 34 %). Tato skutečnost je však s největší pravděpodobností určována především nabídkou porostů na stanovišti.

6.2.4. Inventarizace pobytových znaků bobra v modelovém území Tvrdonice

V zájmovém území Tvrdonice (cca 800 ha) byly zkontrolovány terénní pocházky všechných vodních ploch a jejich okolí. Stanoviště byla hodnocena podle následující stupnice a byly vytopřené mapy č. 1-4, intenzity tlaku bobrů na prostředí.

Stupnice intenzity výskytu pobytových znaků:
- bez pobytových znaků - neoznačené toky
- ojedinělý výskyt pobytových znaků (skluz, nebo stopa, nebo jednotlivé ohlodané a kácené stromy do 40 let věku) – modré označené toky
- intenzivní výskyt pobytových znaků (používaná hráz, nora, hrad, ohlodané a kácené stromy nad 40 let věku (jedinci), ohlodané a kácené stromy do 40 let věku (skupiny), ohlodané a kácené stromy do 40 let věku (plochy) – červeně označené toky

6.2.5. Souhrn

- Potvrdil se vliv bobra na morfologii stanoviště a byla stanovena jeho intenzita. V horizontu 15 let se zvýšilo zastoupení vodní plochy v rámci 50 m bufferu podél toků o 176,4 %.

- Na základě realizovaných šetření byly vytipovány nejdůležitější stanovištní charakteristiky určující porosty ohrožené bobrem (bylínné patro 100 %, křovinné patro 50 %, šířka toku 3,1-4,1 m, atd.).

- V celkovém hodnoceném souboru druhů dřevin poškozovaných bobrem se vyskytoválo 40 % topolu, 16 % vrby, 12 % jasana, 24 % dubu, 3 % jilmu, 3 % ošle, v případě břízy a osiky to bylo 1 %. Na jiných lokalitách však bylo zjišťováno například i intenzivní poškozování borovice.

- Byla připravena, ověřena a realizována metodika vyhledávání rizikových porostů z hlediska potenciálních škod bobrem.
Mapa č.1: Inventarizace rizikových úseků toků – modelové území Tvrdonice
Mapa č.2: Inventarizace rizikových úseků toků – modelové území Tvrdonice
Mapa č.3: Inventarizace rizikových úseků toků – modelové území Tvrdonice
Mapa č.4: Inventarizace rizikových úseků toků – modelové území Tvrdonice
6.3. Inventarizace výskytu bobra a trendy populací v rámci ČR

6.3.1. Kvantitativní vývoj populací bobra v ČR

a) Grafické vyjádření početních stavů bylo konstruováno na základě databáze Myslivecké statistiky (Mysl 1-01), pro roky 2003 - 2009.

Vývoj stavů bobra v ČR zobrazuje graf č. 8. Z uvedeného grafu je zřejmý trend početních stavů bobrů, který má setrvalou úroveň i když v posledních třech letech můžeme registrovat určitou rozkolísanost, která je pravděpodobně způsobena buď nepřesnostmi v odhadu hlášených stavů, a nebo došlo ke snížení počtu bobrů v důsledku povodní v předcházejícím roce. Ty postihují především přírůstk – juvenilní část populace.

Graf č.8:

Tab. č.4: Vývoj sčítaných stavů bobra v ČR (Mysl 1 - 01)

<table>
<thead>
<tr>
<th>Rok</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Česká republika bobr/ks</td>
<td>369</td>
<td>895</td>
<td>1422</td>
<td>1724</td>
<td>1682</td>
<td>2852</td>
<td>2027</td>
</tr>
</tbody>
</table>

Z grafu č. 9 vývoje populací bobra v oblastech je zřejmý všeobecný nárůst populací v oblastech s výjimečnými meziročními propady (zřejmě v důsledku chybného odhadu stavů, nebo jako důsledek povodní). Oblast „Morava“ zahrnuje povodí Moravy a Odry.
Graf. č.9:

![Graf růst populace bobra evropského v ČR]

Tab. č.5: Růst populace bobra v ČR v jednotlivých letech (ks)

<table>
<thead>
<tr>
<th>Rok</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>S Čechy</td>
<td>12</td>
<td>18</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>Z Čechy</td>
<td>62</td>
<td>108</td>
<td>115</td>
<td>128</td>
<td>175</td>
<td>274</td>
</tr>
<tr>
<td>Morava</td>
<td>143</td>
<td>402</td>
<td>398</td>
<td>735</td>
<td>576</td>
<td>1187</td>
</tr>
<tr>
<td>Podyjí</td>
<td>121</td>
<td>303</td>
<td>777</td>
<td>827</td>
<td>533</td>
<td>691</td>
</tr>
</tbody>
</table>

V roce 2007 se zdálo, že v některých oblastech je kapacita prostředí pro bobra již vyčerpána, eventuálně dochází z jiných důvodů (např. pytláctví, povodně), k zastavení nebo dokonce poklesu početního růstu. Údaje z roku 2008 však tuto hypotézu nepotvrdily.

Tab. č.6: Růst populace bobráv oblastech ČR v % roku 2003

<table>
<thead>
<tr>
<th>Rok</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>S Čechy</td>
<td>100</td>
<td>174</td>
<td>185</td>
<td>206</td>
<td>282</td>
<td>442</td>
</tr>
<tr>
<td>Z Čechy</td>
<td>100</td>
<td>150</td>
<td>125</td>
<td>92</td>
<td>100</td>
<td>192</td>
</tr>
<tr>
<td>Morava</td>
<td>100</td>
<td>281</td>
<td>278</td>
<td>514</td>
<td>403</td>
<td>830</td>
</tr>
<tr>
<td>Podyjí</td>
<td>100</td>
<td>250</td>
<td>642</td>
<td>683</td>
<td>440</td>
<td>571</td>
</tr>
</tbody>
</table>

Plošné vyjádření vývoje areálu bobráv v ČR zobrazuje graf č.11, prostřednictvím počtu osídlených honiteb, tato forma zobrazení vyrovnává kolísání, které je možné registrovat v případě grafického zobrazení stavů. Graf potvrzuje setrvalý trend rozšiřování areálu bobráv v ČR.

Tab. č.7: Růst populace bobráv vyjádřený počtem obsazených honiteb (ks)

<table>
<thead>
<tr>
<th>Rok</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>S Čechy</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Poodří</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>18</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Z Čechy</td>
<td>16</td>
<td>20</td>
<td>25</td>
<td>33</td>
<td>24</td>
<td>45</td>
</tr>
<tr>
<td>Podyjí</td>
<td>13</td>
<td>23</td>
<td>31</td>
<td>40</td>
<td>34</td>
<td>43</td>
</tr>
<tr>
<td>Pomoraví</td>
<td>33</td>
<td>75</td>
<td>86</td>
<td>110</td>
<td>102</td>
<td>139</td>
</tr>
</tbody>
</table>
6.3.2. Vývoj areálu rozšíření populace bobra v ČR

Na základě statistických údajů z vybraných honiteb v ČR byly konstruovány mapy výskytu bobrů pro jednotlivé roky 2003 a 2008 (mapy pro roky 2004-2007 byly použity jako pracovní materiál). Uvedené mapy č. 5. a 6., kromě informace o plošném rozšíření populace bobra
v jednotlivých letech, informují také o denzitě populace. Ta je zobrazena barevnou stupnicí, vyjadřující počet bobrů v honitbě.

Z uvedených map je zřejmý poměrně dramatický nárůst populace bobrů v rámci hodnocené periody. To platí především v oblasti povodí Moravy a povodí Dyje (dále Podyjí), kde druh nalezl zřejmě velmi vhodné stanovišťní podmínky - porosty měkkých dřevin v nivách řek a potoků, v rovinaté krajině. V této oblasti dosahuje populace nejvyšší denzity a nalézá se zde těžiště celé hodnocené populace. Další, pro potřeby předkládané práce víceméně diferencované oblasti výskytu a šíření bobra nacházíme v Poodří, povodí Radbuzy a Mže (dále jen západní Čechy) a v severních Čechách v povodí Labe (dále jen severní Čechy). Kromě takto definovaných oblastí lze vysledovat výskyt bobra v jedné honitbě na toku Labe, v rámci Středočeského kraje nebo např. v Orlických horách (asi v návaznosti na povodí Moravy), atd.

Popsané rozšíření bobra podle sčítání v honitbách se dobře shoduje s rozšířením bobra podle ČERVENÉHO (2003). Další údaje o šíření bobra v ČR přináší práce, která dokumentuje vývoj situace od prvních zjištění bobra v ČR. I v tomto případě lze konstatovat dobrou shodu hodnocených databází.

Je zřejmé, že osidlování území České republiky probíhalo a probíhá jednak spontánně z Rakouska (jižní Morava) a Německa (západní Čechy) a jednak repatriacemi. Repatriace bobra proběhla v Litovelském Pomoraví, na Odře a nelegálně zřejmě i jinde. K vypuštění bobrů došlo i v rámci vojenského prostoru VLS Lipník nad Bečvou.

Na základě výše uvedeného byl připraven zmíněný kartografický materiál, popisující výskyt a šíření bobra v ČR a který byl využit při dalším řešení.

Mapa č.5:
Harmonizace vztahu populace bobra evropského a stavu prostředí

Výsledky

Vývoj populace bobra, respektive jednotlivých populací, byl zobrazen na mapách č. 5. a 6, a následně prostřednictvím polygonů s vyhodnocením jejich výměry v km² a prostřednictvím počtu honiteb osídlených bobry.

Je zřejmé, že ve všech oblastech došlo k nárůstu plochy polygonů. V případě Poodří se jedná o vznik zcela nové oblasti registrované mysliveckým sčítáním poprvé až v roce 2004.

Obdobně jako předchozí hodnocení i vyjádření prostorového vývoje populace bobra v ČR pomocí polygonů dokumentuje jeho expanzi. Pro kvantifikaci tohoto jevu byl dále konstruován grafem č. 12. Tento graf zobrazuje šíření populace v průběhu sledovaného období prostřednictvím výměry polygonů v km². Vyplývá z něj, že v roce 2003 činila výměra
projektů grantové služby LČR

Harmonizace vztahu populace bobra evropského a stavu prostředí

Polygonů 6 121km² tj. 7,56 % výměry České republiky. Za pět let pak došlo k nárůstu plochy polygonů zahrnujících výskyt a potenciální výskyt bobrů na 25,49 %.

Tab. č.8: Růst populace bobra vyjádřen v km² polygonů

<table>
<thead>
<tr>
<th>rok</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>S Čechy</td>
<td>133</td>
<td>491</td>
<td>425</td>
<td>549</td>
<td>562</td>
<td>777</td>
</tr>
<tr>
<td>Poodří</td>
<td>66</td>
<td>1987</td>
<td>994</td>
<td>1892</td>
<td>1865</td>
<td>2128</td>
</tr>
<tr>
<td>Podyjí</td>
<td>363</td>
<td>927</td>
<td>3827</td>
<td>3724</td>
<td>3991</td>
<td>3796</td>
</tr>
<tr>
<td>Z Čechy</td>
<td>1285</td>
<td>2747</td>
<td>2938</td>
<td>3089</td>
<td>3186</td>
<td>7853</td>
</tr>
<tr>
<td>Pomoraví</td>
<td>4274</td>
<td>6396</td>
<td>9567</td>
<td>10711</td>
<td>10498</td>
<td>12499</td>
</tr>
</tbody>
</table>

Graf č.12:

Růst populace bobra vyjádřen v km² polygonů

6.3.3. Inventarizace a populační dynamika bobra v modelové oblasti

V modelovém území jižní Moravy (LZ Židlochovice) byla denzita populace a její vývoj v čase vyjádřen počtem sčítaných bobrů v honitbě na 100 m vodních toků. Situace v jednotlivých letech byla zobrazena kartograficky.

Z porovnání map č. 8. a 9 je zřejmý nárůst populace bobra, a to jak plošný, tak početní. V demonstrované části kartografického materiálu přitom nebyly zaregistrovány žádné honitby, ve kterých by četnost bobrů na 100 m toku v průběhu pěti let poklesla. Je tedy zřejmé, že prostředí není doposud populace hustotou bobrů naplněno a že stále existuje prostor pro migrace a obsazování nových domovských okrsků v rámci mapované oblasti.

Institut ekologie a chovu zvěře, s.r.o. 48
6.3.4. Metody zjišťování počtů zvířat na stanovištích

a) Registrace zvířat fotopastí (režim fotografie, režim video, režim infra) – pasti byly instalovány a byla prověřována jejich použitelnost jak v mimovegetační periodě, tak v periodě vegetační. Expozice pastí trvala vždy minimálně celých 24 hod., většinou však 3-6 dnů. Maximální počet pastí nasazených současně na jedné lokalitě byl 5 ks. Pasti byly umisťovány ke stromům, na kterých byl zjištěn čerstvý ohryz, ke kanálům, stezkám a v některých případech k předkládané návadě (mimovegetační perioda).

Celkem bylo realizováno cca 5 700 expozičních hodin. Použitá technologie – fotopasti – ať již v režimu foto nebo video, se ukázala použitelná pouze jako podpůrná a nelze použít pro přesné, exaktní určení počtů bobrů na stanovišti.

Důvodem uvedeného závěru jsou technické limity zařízení (reálný dosah, úhel záběru) na straně jedné a uniformita vzhledu bobrů na straně druhé. Nelze tak v běžné praxi

b) Stanovení počtu zvířat na základě mapování pobytných znaků

VOREL (2006) doporučuje pro stanovení počtu bobrů na osídleném stanovišti koeficient 6 (5-7 ks), dle NIETSCHE, K. je vhodné používat koeficient 3,6 ks (ústní sdělení), BERBER (2008) doporučuje realizovat pro každý rok a region kontrolní šetření a dle takto získaných výsledků stanovit koeficient pro osídlená stanoviště. Dále bylo pro stanovení počtu bobrů na stanovišti použito stupnice: 10 skácených stromů za rok na stanovišti = 1 ks, 11-50 skácených stromů = 2 ks, 50 a více skácených stromů na stanovišti = 3 ks a více, eventuálně lze použít stupnici: nález stop adultního bobra na pastevní ploše = 1 ks, nález stop adultního bobra a mláďete na pastevní ploše = 2 ks adultní bobří a 1 ks mláď. Uvedená metodika pobytných znaků (kácených stromů) je zřejmě minimalistická z hlediska uvažovaných početních stavů.

V rámci kontrolních stanovišť byly získány následující výsledky (2009):

Bystřice
- dle VOREL, A.: 6 ks
- dle NIETSCHE, K.: 3,6 ks
- dle pobytných znaků (kácených stromů): 2+ ks

Tvrdonice
- dle VOREL, A.: 6 ks
- dle NIETSCHE, K.: 3,6 ks
- dle pobytných znaků (kácených stromů): 2+ ks

Bolelouc
- dle VOREL, A.: 12 ks
- dle NIETSCHE, K.: 7,2 ks
- dle pobytných znaků (kácených stromů): 6+ ks

c) Sčítání zvířat a registrace jejich věku přímým pozorováním eventuálně videozáznamy

Na základě přímých pozorování na vybraných stanovištích byly stanoveny následující počty:

a). Bystřice – 5 ks
b) Tvrdonice – 4 ks
c) Bolelouc – 12 ks
Foto č.2: Snímek bobra fotopastí (v noci)

Foto č.3: Snímek přímého pozorování bobra

Na základě prověření různých metodik stanovení počtů bobrů v jednom domovském okrsku bylo zjištěno, že podobných výsledků bylo dosaženo metodikou Nietsche a Heidecke, nejvyšší počty jsou stanovovány metodikou podle Vorla. Celkový počet bobrů na vybraných třech stanovištích byl v případě prvních dvou metodik 14,4 a 10+ ks.
Následuje metodika podle Vorla, která stanovila 24 ks bobrů. Na základě přímých pozorování lze odhadovat počet bobrů celkem na 21 ks, z tohoto hlediska se pak jeví metodika Vorla jako nejpřesnější.

6.3.5. Věkové a pohlavní složení skupin zvířat na jednotlivých stanovištích

b) Registrace různověkých jedinců podle pobytových znaků (stop)

V rámci kontrolních stanovišť byly získány následující výsledky:

- Bystřice – nezjištěno
- Tvrdonice – nezjištěno
- Bolelouc – zjištěno

Metodika hodnocena jako nespolehlivá.

c) Stanovení věkového a pohlavního složení skupin zvířat na stanovištích lze nejpřesněji stanovit přímým pozorováním. Bohužel nejsou k dispozici jiné, přesnější metodiky.

6.3.6. Prognóza vývoje populace bobrů v ČR a posouzení populační dynamiky populací bobrů v ČR.

a) Celkově lze konstatovat, že vykazované stavy bobrů vzrostly za posledních 5 let na 643,5 % (o 543,5 %). Průměrný roční přírůstek přítom činí 52 % (14 % - 146 %) vykazovaného stavu v předcházejícím roce. Toto číslo však ani zdáleka nepopisuje reálný stav a vývoj populace vzhledem k tomu, že reprodukční schopnost nastupuje u bobrů v 2. - 3. roce života. V expandující populaci je přitom nepochybně vyšší zastoupení mladých jedinců mimo reprodukci. Specifikace principů vývoje populační dynamiky je výrazně ovlivňována stavem v zahraničí. V literatuře je odhadována reprodukce bobrů 1 ks dospělého bobra (trříletého), na jednu samici ročně (STUBBE, 1981). To odpovídá některým údajům o mortalitě mladých bobrů, kdy například z vrhu 3 mláďat dožívá dospělosti (věk tří let) 1 ks.

b) Prognóza vývoje populace bobra v ČR

Pomocí konstrukce exponentiální (-6,2765E5+313,6x) a lineární křivky (0exp0,3116x) vývoje početnosti bobrů v ČR byly vytvořeny grafy, na jejichž základě lze odhadovat další vývoj populace. Je z nich zřejmé, že pro nejbližší léta lze předpokládat další nárůst početnosti bobrů, minimálně na stejně úrovni jako doposud. Podle dosavadních znalostí

Institut ekologie a chovu zvěře, s.r.o.
vývoje populační dynamiky expandujících druhů se jeví jako pravděpodobnější vývoj populace bobra podle křivky exponenciální.

Na základě posouzení stabilizovaných areálů druhů s podobnými stanovištními nároky jako má bobr, lze předpokládat, že vhodné stanovištní podmínky, které budou bobrem osídleny, se nachází především v oblasti Třeboňské a Českobudějovické pánve.

Obr. č.5 a 6 Prognostické křivky vývoje početnosti bobra
6.3.6. Souhrn

- Lze konstatovat, že populační exploze bobra není zbržděna, jak ukazovaly některé údaje z roku 2007. V roce 2003 pokrýval areál bobra 7,56 % výměry ČR, v roce 2008 to bylo již 25,49 %.

- Podle realizovaných analýz nejsou ani stanoviště jižní Moravy (povodí Moravy), s nejvyšší denzitou bobrů v ČR nasycena.

- Pro evidenci stavu bobrů je zřejmě nejvhodnější metodika podle Vorla (viz výše).

- Byly zpracovány prognostické křivky, které umožňují odhadovat vývoj četnosti populací bobra v nejbližších letech.

6.4. Inventarizace škod bobrem na hospodářských činnostech člověka v rámci LZ Židlochovice a ČR

6.4.1. Charakteristiky poškozených jedinců a porostů dřevin podle vykazovaných škod v modelové oblasti LZ Židlochovice

Průměrný věk poškozených stromů u nichž byla v jednotlivých letech uplatňována náhrada kolísal od 20 do 50 a více let, což svědčí o jisté toleranci bobrů k této charakteristice (viz graf č. 13).

Graf č.13:

Další hodnocenou charakteristikou bylo zakmenění porostů (graf č.15) ve kterých se poškozené stromy nalézaly (lze předpokládat uplatnění faktoru krytu a kvality potravy). Zakmenění využívaných porostů se pohybovalo v pásmu hodnot 8.5 – 10.
Ztráty vzniklé na dřevní hmotě v důsledku pastevních a jiných aktivit bobrů, vyjádřené v m³, zobrazuje graf č. 16 a dokumentuje objem škod bobrem v jednotlivých letech.

V podstatě stejnou situaci, která byla popsána výše, zobrazuje graf č. 17 pro redukovanou plochu poškození.

Graf č.16:

Objem poškozených dřevin v m³

<table>
<thead>
<tr>
<th>Rok</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>poškození (m³)</td>
<td>200</td>
<td>150</td>
<td>250</td>
<td>50</td>
<td>200</td>
<td>700</td>
</tr>
</tbody>
</table>

Graf č.17:

Vykazovaná plocha poškozených dřevin

<table>
<thead>
<tr>
<th>Rok</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>poškození (ha)</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>
6.4.2. Inventarizace škod bobrem na hospodářských činnostech člověka v rámci ČR

a) Lesy České republiky, s.p. – organizační jednotky (lesní správy popř. lesní závody)

Mapa č.10: Výše škod bobrem v lesích 2004 -2008 v Kč (Lesy České republiky, s.p.)

Na základě evidence rozšíření bobra v rámci celé ČR byly osloveny odpovídající lesní správy. Z celkového počtu 77 to bylo 22 lesních správ LČR: Znojmo, Třebíč, Strážnice, Bučovice, Buchlovice, Prostějov, Šternberk, Svitavy, VLS Lipník, Lanškroun, Ruda n./Moravě, Děčín, Františkovy Lázně, Přímost, Horšovský Týn, Domažlice, Stříbro, Rychnov, Opava, Ostrava, Vítkov a Lesní závod Židlochovice.

Bez vykázaných škod byly lesní správy: Znojmo, Třebíč, Bučovice, Buchlovice, Prostějov, Svitavy, VLS Lipník, Lanškroun, Ruda na Moravě, Děčín, Františkovy Lázně, Přímost, H.Týn, Domažlice, Stříbro, Rychnov, Opava, Ostrava, Vítkov. V případě LS Prostějov, Svitavy, Horšovský Týn, Rychnov. V omezeném měřítku se však i na některých z těchto správ škody vyskytují, nejsou však zatím pociťovány jako problém a nejsou oficiálně uplatňovány (např. Prostějov, Svitavy, Horšovský Týn, Rychnov)

Vykazované škody se vyskytují na lesních správách či závodech: Židlochovice a Šternberk.

Za posledních pět let činily vyplacené škody na lesních porostech v rámci jednotlivých lesních správ a lesních závodů celkem 11 937 314 Kč (LZ Židlochovice 11 768 345 Kč, LS Strážnice 155 160 Kč, LS Šternberk 10 809 Kč).

V roce 2004 byly vykázány škody pouze u LZ Židlochovice ve výši 1 483 336 Kč, v roce 2008 byly vykázány škody ve výši 3 297 259 Kč. To znamená, že vyplacené škody bobrem celkově vzrostly na 276,3 %.
Prakticky všechny vyplacené škody jsou za okus a kácení. V oblasti vytváření jezer a podmáčení porostů se nepodařilo ztráty uplatnit.

b) Lesy České republiky, s.p. - správy toků - oblasti povodí

Drobné vodní toky ve správě LČR byly v době řešení projektu územně rozděleny mezi správy toků - oblasti povodí Dyje, Moravy, Odry, Ohře, Labe, Berounky, Vltavy. Náplň činnosti těchto organizačních jednotek je péče o drobné vodní toky vyskytující se v rámci lesní půdy, které nespadají do působnosti podniků povodí. Odpovědní pracovníci všech výše uvedených povodí konstatovali, že pokud se bobr na území, které spadá do jejich kompetencí vyskytuje, nepociťují jeho činnost jako problém. Vyskytuje se jen pomístně a jeho působení na břehové poroty není významné.

c) Správy povodí

Území republiky je organizačně rozděleno na povodí Labe, Vltavy, Berounky, Ohře, Odry a Moravy.

Problematika škod bobrem byla, kromě kontrolních šetření, konzultována se zástupci uvedených podniků.

Povodí Labe: bobr a jeho činnost je registrována v posledních pěti letech. Vodohospodářské stavby nejsou poškozovány, pomístně dochází k okusu a kácení jednotlivých stromů v pobřežních porostech (jednou došlo k ohryzu výsadby - Novosady na Orlici). Celkově není výskyt bobra a jeho aktivity pociťován jako problém.

Povodí Berounky: Celkově není výskyt bobra a jeho aktivity pociťován jako problém.

Povodí Vltavy: Dochází pomístně k okusu a kácení jednotlivých stromů v pobřežních porostech. Celkově není výskyt bobra a jeho aktivity pociťován jako problém.

Povodí Moravy: Celková výše škod působených bobrem je za posledních pět let vyčíslena na 6 217 500 Kč. Z toho náklady na:
- odstranění pokácených stromů 343 500 Kč (v celkovém objemu škod 5,5 %)
- likvidace stromů kácením a okusem 1 232 000 Kč (v celkovém objemu škod 19,8 %)
- oprava berny 62 000 Kč (v celkovém objemu škod 1,0 %)
- nory v hrázích 4 371 000 Kč (v celkovém objemu škod 70,3 %)
- zátarasy 209 000 Kč (v celkovém objemu škod 3,4 %).

Institut ekologie a chovu zvěře, s.r.o.

58
Mapa č.11: Výše škod bobrem 2004 -2008 v Kč (Povodí Moravy, s. p.)

d) Zemědělská vodohospodářská správa

Organizace je rozdělena na tři organizační jednotky se sídly v Praze, Českých Budějovicích a v Brně. Náplň činnosti těchto organizačních jednotek je péče o drobné vodní toky vyskytující se v rámci zemědělské půdy, které nespadojí do působnosti správ povodí a LČR. V rámci regionálních správ Praha a České Budějovice není výskyt bobra registrován a pociťován jako problém.

- ohryz břehových porostů 130 000 Kč (v celkovém objemu škod 6,6 %)
- likvidace dřevin v břehových porostech 500 000 Kč (v celkovém objemu škod 25,2 %)
- zprůtočňování toků (usazeniny, hráze) 1 350 000 Kč (v celkovém objemu škod 68,2 %)

e) Krajské úřady

Vykázané škody bobrem dle krajů:

- Jihomoravský: 23 861 268 Kč
- Olomoucký: 615 466 Kč
- Zlínský: 96 000 Kč
- Plzeňský: 27 888 Kč
- Celkem: 24 600 622 Kč

Struktura vykázaných škod:
- Zaplavení lesa: 27 888 Kč (v celkovém objemu škod 0,1 %)
- Zaplavení polí: 2 436 183 Kč (v celkovém objemu škod 9,5 %)
- Okus a kácení dřevin: 22 570 958 Kč (v celkovém objemu škod 88,1 %), zatížení porostů ve správě LČR z toho činí 52,9 %.
- Spasené zemědělské kultury: 592 372 Kč.

V roce 2004 byly vykázány celkové škody 1 483 336 Kč, v roce 2008 6 075 339 Kč. To znamená nárůst na 409,6 %.

Prognóza vývoje škod bobrem v pětileté perspektivě

Na základě jednoduchého vychodnocení lineární prognostické křivky vývoje početnosti bobra, lze předpokládat, že v roce 2014 budou výše uváděné škody bobrem v jednotlivých oblastech hospodářské činnosti člověka minimálně o 100 % vyšší než v roce 2010.

Mapa č.12: Výše škod bobrem 2004 -2008 v Kč (Zemědělská vodohospodářská správa)
6.4.3. Vyhodnocení kartografického materiálu
Dle provedeného orientačního vyhodnocení lze konstatovat, že při výskytu cca 20 a více bobrů v jedné honitbě, začínají být majiteli lesů a zemědělské půdy uplatňovány škody.

6.4.4. Stanovení výše neuplatňovaných škod
Lze odvozovat z předpokladu, že téměř jistě nejsou uplatňovány v honitbách se stavy bobrů nižšími než 0-15 ks, což představuje pokácení stromů v objemu 30-60 m³. Při předpokládané ceně palivového dříví 500,- Kč, to představuje 15 000,- až 30 000,- Kč, v jedné osazené honitbě nebo cca 7 500 000,- Kč v celé ČR.

6.4.5. Souhrn
• Provedená šetření potvrdila literární údaje o preferenci měkkých dřevin bobrem. Na straně druhé však lze konstatovat určitou toleranci bobra ve výběru dřeviny, neboť v souboru poškozených stromů měl významné zastoupení i dub. Podobné nelze jednoznačně stanovit limity pro další charakteristiky jedinců a porostů dřevin.

• Realizovaný průzkum výše škod bobrem a jejich prognóza popsaly závažnost situace. Lze předpokládat, že škody bobrem dosáhnou v rámci ČR v nejbližších letech na úroveň desítek milionů ročně (víz výše).

• Nárůst nákladů na prevenci škod a škody bobrem lze předpokládat ve zvýšené míře u vodohospodářských děl.
6.5. Praktické ověření opatření – ověřená metodika

6.5.1. Ověření jednotlivých technologií

a) Individuální ochrana repelenty: Morsuvin, Aversol, kontrolní skupina – aplikováno na polese Tvrdonice (926D3). Jedinci poškození před počátkem pokusu byli registrováni pomocí GPS. Při periodických kontrolách byly změny opět registrovány pomocí GPS.

 Jedná se o řadovou výsadbu nestejně silné tyčkoviny až tyčoviny s bylinným podrostem, stáří 20 let, zakmenění 10, dřevina dub (perioda 2009-2010, velikost vzorku n=234).

 - Aversol: poškozeno celkem jedinců 2009: 8,3 %, 2010: 18,4 %
 - Morsuvin: poškozeno celkem jedinců 2009: 70 %, 2010: 74 %
 - Kontrola: poškozeno celkem jedinců celkem 2009: 16,4 %, 2010: 21,5 %
 - Účinnost aplikace pachových repelentů zatím bez vyhodnocení (Kornitol, Hagopur)

Z uvedeného je zřejmá účinnost jednotlivých repelentů. V případě Aversolu lze předpokládat velmi omezenou účinnost. V případě Morsuvina se zdá, že naopak stimuloval ohryz stromů, zřejmě i jinou zvěř.

b) Individuální ochrana mechanická: ovázání pletive m, ovázání rákosem (Tvrdonice)
 - 90 jedinců ošetřeno – 0 jedinců poškozeno

c) Ochrana porostu: oplocenky (Tvrdonice)
 - 2 lokality: 0 jedinců poškozeno

d) Technologie pro snížení hladin nad hrázemi
 - nebyl vytvořen prostor pro ověření: Lesním závodem Židlochovice podána žádost na CHKO Pálava (Mikulov) a následně zde konzultována řešitelem (žádost i s návrhem opatření je uložena na LZ Židlochovice).

e) Ochrana lesních nebo zemědělských kultur a vodohospodářských staveb před bobrem. (Viz kapitola 6.5.2 Metodika)

f) Příkrmování (lokalita Bystřice-Folmava)

V mimovegetační periodě byl bobrům předkládán následující sortiment potravy: řepa, brambory, celer (bulva), petržel (kořen), mrkev, kukuřice (palice), jablka, chléb, nakácené stromy. Příjem byl monitorován fotopastmi. Předkládaná krnova byla přijímána černou a vysokou zvěří často dříve než bylo krmeliště navštíveno bobrem. Jako potenciální, návyková krnova lze podle atraktivity označit:

1. nakácené stromy, které byly využívány i ve vegetační periodě
2. jablka
3. kukuřici
4. mrkev
5. chléb

Příkrmování nemělo zřetelný vliv na ostatní aktivity bobrů
6.5.2. Metodika - Ochrana lesních nebo zemědělských kultur a vodohospodářských staveb před bobrem.

Dále uvedená a ověřená metodika byla v rámci řešení úkolu vydána v brožované formě a výtisky poskytnuty provozu. Je přiložena k závěrečné správě (Bobr v současné krajině).

Při našem průzkumu v praxi jsme se setkávali s názorem, že jakékoliv oplocení nebo ochrana jednotlivých dřevin, nebo celých porostů je proti bobru neúčinná, neboť bobr dokáže všechny překážky překonat. Dle našeho názoru toto pramení z nedokonale realizovaných opatření, ať již z hlediska provedení, nebo projektu. Ve skutečnosti lze lokalně, buď individuálně nebo zaplocením větší plochy, úspěšně ochránit jedince nebo založené porosty. Pro individuální ochranu se například neosvědčily plastové tubusy, které byly během delší doby zničeny. Jednotlivé stromy je třeba ochránit buď oplocením silným pletivem, které může mít různý tvar (např. trojúhelníkový) nebo může být využito přírodního materiálu (viz obr. č. 7). Třetí velmi levnou alternativou individuální ochrany je ovázání kmene větvemi, jak to známe i z ochrany stromů proti loupání spárkatou zvěří (obr. č. 8).

Ochrana celých porostů pomocí vyplocení je také účinná, ovšem oplocení musí mít odpovídající parametry - tedy výšku minimálně 80 cm a je třeba, aby bylo zahnuto, popřípadě zapuštěno do země směrem vně oplocenky (obr. č. 9). Konstrukčně jiný systém oplocení, který lze využít při ochraně kultur, spočívá v oplocení břehů a přehrazení toku výklopnou mříží. Je tak omezena optimální migranční cesta bobrů k chráněnému porostu. Oplocení je zobrazené na obrázku č. 10, přerušuje migrace podél toku a umísťuje se mezi kolonii bobrů a ohroženou kulturu.

Mechanická ochrana jedinců a porostů
Obr. č.7
Obr. č.8

Obr. č.9
Regulace hladiny vody v bobřích jezerech – ochrana před zaplavováním a podmáčením porostů

Regulace expanze bobrů do prostoru na vybraných lokalitách je možná omezením plochy budovaných jezer prostřednictvím snížení hladiny vody v nich. Bobří hráze jsou velmi pevné, jejich narušení pracně a bývají většinou bobry velmi rychle opraveny. Skutečností je, že ani „provlečení“ drenáže hrází v potřebné výšce, s odpovídajícím průměrem, s přesahem stěny hrází o 2 – 3 m nemusí být funkční, protože bobří takovou „sabotáž“ dříve či později objeví a drenáž ucpou. Je proto třeba volit některá složitější konstrukční řešení viz obrázky č. 11, 12, 13 a 14. Různé varianty je třeba aplikovat podle konkrétních podmínek na místě.

Obr. č.11
Obr. č.12

Obr. č.13

Obr. č.14
Ochrana viaduktů a kanálů pod komunikacemi před ucpáním bobry

Obr. č.15

Obr. č.16
Obr. č.17

silnice

2,0 - 2,5 m

odtokový kanál

4,5 - 5 m

1,8 - 2,0 m

směr proudu

Obr. č.18
Ochrana a stabilizace hrázi rybníků a protipovodňových hrází
Obr. č.19

Regulace aktivit bobrů
Obr. č.20
Kromě přímé ochrany vodohospodářských staveb lze riziko jejich destabilizace bobřími aktivitami částečně eliminovat výstavbou umělých nor, které mohou usměrňovat výskyt bobrů na stanovišti. Schéma umělých nor v břehu jsou uvedeny výše (obr. č. 20).

6.5.3. Souhrn

- Na základě realizovaných testů lze konstatovat, že účinnost nátěrových a pachových repelentů je diferencovaná, avšak ani jeden z testovaných přípravků nelze praxi doporučit jako vysoce účinný.

- Aplikace mechanické ochrany – speciální oplocenky (viz 6.5.1. e), individuální ochrana stromů se osvědčila.

- Příkrmování bobrů je možné, avšak praktické využití je diskutabilní.

- Aplikace drenáží nebyla povolena. Žádost byla podána již před zahájením projektu Lesním závodem Židlochovice a následně konzultována na příslušné správě CHKO řešitelem projektu.

- Byla zpracována a vydána metodika ochrany lesa, zemědělských kultur, komunikací a vodohospodářských děl, která je součástí předložené závěrečné zprávy (HAVRÁNEK et al.: Bobr v současné krajině, Rembrandt, s.r.o., 2009, 20 s.)
6.6. Návrh vzorového managementu prostředí a populace bobra v modelové oblasti Tvrdovice

Cílem řešení projektu je eliminovat v maximální možné míře střetové situace mezi vlivem populace bobra na stanoviště a zájmy lesního hospodářství (při odpovídající efektivitě opatření).

6.6.1. Základní teze

a) Bobří rodiny jsou teritoriální, v důsledku této vlastnosti dochází dráživé nebo později k „naplnění“ prostředí teritorii (velikost dle trofické a topické kapacity prostředí) a migracím přírůstu bobrů z původní lokality výskytu.

b) V přirozeném stavu prostředí a populace bobra dochází (v horizontu např. 5 - 15 let) k vyčerpání potravní nabídky na stanovišti rodiny, která je opouští a migruje na jinou lokalitu. K rekonstrukci stanoviště přirozenou sukcesí dochází opět po pěti až patnácti letech. Pak může být znovu osídlena. Takovéto fungování ekosystému předpokládá rozsáhlé oblasti s přirozenými stanovišti.

c) Při odčerpávání části přírůstu populace lovem (usmrcení, translokace) lze udržet jednotlivá stanoviště ve stavu „permanentního“ osídlení. Nedochází k vyčerpání trofické kapacity prostředí a migracím rodičovského páru. To znamená, že produkce biomasy na stanovišti pokrývá potřebu rodiny bobrů (ověřený norský model).

d) V podmínkách povodí Moravy a Dyje se střety mezi zájmy lesního hospodářství, zemědělství a činnosti bobrů prezentují téměř jistě při průměrném osídlení jednoho kilometru toku 1,5 a více kusů bobrů.

e) Pokud není řešení škod bobrem nebo jinými druhy na hospodářských činnostech člověka legislativně zajištěno, řeší je místní obyvatelstvo nelegálně, a to i v případě, že totální ochrana druhu a stanoviště je celostátní, nebo jen zonální.

f) Čílené zvyšování kapacity prostředí bobrů, vzhledem k jeho stanovištní plasticitě a stavu prostředí v ČR není obecně aktuální.

g) Zvyšování trofické kapacity prostředí přikrmováním bobrů, s cílem redukce škod, má jen pomístný význam.

h) Vliv bobra na stanoviště nelze v konkrétních podmínkách standardizovat.

6.6.2. Management prostředí a populace bobra v modelové oblasti Tvrdovice

Cílem navrženého managementu je pokud možno eliminovat střetové situace mezi zájmy lesního hospodářství a životními projevy bobrů. To znamená, snížení škod bobrem při početně i prostorově stabilizované populaci.
a) Nástroje redukce škod

Příkrnování v rizikových obdobích roku (jaro, podzim)
- kácení měkkých dřevin
- kukuřice, jablka (riziko příjmu jinými druhy – divoké prase, atd.)

Mechanická ochrana porostů (viz dříve vypracovaný metodický pokyn 6.5.1. e)
- oplocenky (zesílené úseky – segmenty vyrobené z „KARI“ sítě, cena jednoho metru tj. materiál a práce cca 65,- Kč)
- individuální ochrana (1 ks cca 40,- Kč)

Vytěsnění bobrů z rizikového stanovиště (blízkost zalesněných ploch)
- plašící zařízení
- narušování sídel (hráze-snížení hladiny)

Snížení denzity populace
- odchyt a translokace
- odlov

Foto č.4: Instalace speciální oplocenky
B) Permanentní monitoring stavu prostředí a populace

Vyhodnocení intenzity výskytu pobytových znaků v zájmové oblasti a jejich kartografické zobrazení.

Evidované pobytové znaky bobra:
- hráz
- nora
- skluz
- stopa
- ohlodané a kácené stromy do 40 let věku (jedinci)
- ohlodané a kácené stromy nad 40 let věku (jedinci)
- ohlodané a kácené stromy do 40 let věku (skupiny)
- ohlodané a kácené stromy do 40 let věku (plochy)

Stupnice intenzity výskytu pobytových znaků:
- bez pobytových znaků
- ojedinělý výskyt pobytových znaků (skluz, nebo stopa, nebo jednotlivé ohlodané a kácené stromy do 40 let věku)
- intenzivní výskyt pobytových znaků (používaná hráz, nora, ohlodané a kácené stromy nad 40 let věku (jedinci), - ohlodané a kácené stromy do 40 let věku (skupiny), ohlodané a kácené stromy do 40 let věku (plochy)
Hlavní období monitoringu – kontrol rizikových porostů, je počátek intenzivní exploatace dřevinného patra bobrem tj. první dekáda října až ukončení intenzivní exploatace dřevinného patra tj. druhá dekáda března.

c) Lokalizace rizikových porostů (do 40 let věku) ve vztahu k úsekům vodních toků s intenzivním výskytu pobytových znaků bobra.
- identifikace porostů podle kartografického zobrazení úseků intenzivního výskytu pobytových znaků bobra
- identifikace dle porostní mapy

Porosty s nejvyšším potenciálním rizikem škod bobrem (intenzivní výskyt pobytových znaků, věk do dvaceti let):
927 A1, 928 C2, 928 C13, 930 B1, 931 B4, 931 F15, 931 A2, 928 B3b, 931 C7, 931 D2, 933 A3, 938 A7b, 938 C2, 938 C3, 937 B11.

Porosty s vysokým potenciálním rizikem škod bobrem (intenzivní výskyt pobytových znaků, věk do 20 – 40 let):
927 A0, 927 B14, 927 C1, 928 A12, 930 B8, 931 B7, 931 E2, 931 C7, 929 A10, 933 A11, 933 A4, 929 C2, 934 A, 933 A11, 938 C2, 940 B1, 943 D6, 942 B15, 942 D6a.

6.6.3. Tabulka hodnocení rizika poškození porostu bobrem – algoritmus pro modelování rizika škod

a) Vzorec pro výpočet procentuální úrovně ohrožení porostu – podmíněn výskyt bobra, byl konstruován na základě dříve realizovaných šetření. Podkladem bylo jednak prověření hypotézy o rozdílnosti poškozených a sousedních, nepoškozených porostů – jejich charakteristik (věk porostu, průměr kmene, atd.), jednak vyhodnocení výskytu stanovištních charakteristik, stanoviště osílených bobry (měkké dřeviny, bylinné patro, křovinné patro, šířka toku, bioindikační druh) a literární údaje. Vybraným charakteristikám pak byly přiřazeny váhy v rozmezí od 0,0 do 1,0. Následně byl formulován algoritmus, který vyjadřuje naplnění stanovištních nároku bobra na konkrétní lokalitě a tedy riziko osílení lokality. To je samozřejmě závislé na hustotě populace a dalších faktorech, avšak porosty s vysokým rizikem výskytu bobra (0 % až 100 %) je třeba preferovat v rámci plánu permanentního monitoringu.

\[P\% = \frac{(c_1 + c_2 + c_3 + c_4 + c_5 + c_6 + c_7)}{5,1} \times 100 \]

kde \(c_1 \) až \(c_7 \) nabývá hodnoty buď 0 (pokud se daná vlastnost v prostředí nevyskytuje), nebo experimentálně stanovené konkrétní hodnoty pro danou vlastnost (v případě, že se vlastnost vyskytuje):
\(c_1 = 0,7 \) porost - průměr kmene na pařezu do 22 cm
\(c_2 = 0,8 \) věk porostu do 30 let
\(c_3 = 0,5 \) měkké dřeviny
\(c_4 = 1,0 \) bylníné patro
\(c_5 = 0,9 \) křovinné patro
\(c_6 = 0,9 \) šířka toku 3+ m
\(c_7 = 0,3 \) bioindikační druh

Institut ekologie a chovu zvěře, s.r.o. 75
b) Tabulka (program) hodnocení rizika poškození porostu bobrem

Po označení pro bobra významných stanovištních charakteristik v uvedené tabulce, je programem stanoveno riziko vzniku škod na porostu. Jedná se samozřejmě o relativní hodnotu, závislou na denzitě populace, atd. Porosty s vysokým vypočteným rizikem je třeba preferovat v rámci systému permanentního monitoringu.
6.6.4. Porostní mapy zájmového území - Tvrdonice
Harmonizace vztahu populace bobra evropského a stavu prostředí

Institut ekologie a chovu zvěře, s.r.o.
6.7. Legislativní řešení problému

6.7.1. Současný stav legislativního zabezpečení problematiky

a) Stav populace bobra (z hlediska území celého státu) neodpovídá momentálně vyřazení druhu ze seznamu druhů se zvláštní ochranou, tak aby byl zařazen mezi druhy zvěře, které lze obhospodařovat lovem. V horizontu deseti let to zřejmě neumožní ani legislativa Evropské unie, závazná pro ČR (viz příloha č. I.). Na druhé straně je nutno očekávat v nejbližší budoucnosti nástup velkých škod především na vodohospodářských stavbách.

Pro částečné řešení lokálních střetů zájmů hospodářské činnosti člověka v krajině a populace bobra dávají předpoklad současné legislativní nástroje. Jejich použití je prezentováno v podkapitolách 6.7.4. až 6.7.7., přehled zákonů viz příloha č. I.

b) Současný stav legislativního zajištění hrazení škod, které bobr působí, vyhovuje potřebám řešení škod bobrem jen částečně a některé škody neřeší vůbec.

6.7.2. Legislativa nevyhovující

a) V současné legislativě je vhodné upravit termín hlášení a metodiku uplatňování škod bobrem.

b) Metodickým pokynem MŽP ujednotit a především urychlit projednávání a schvalování managementových opatření redukujících škody bobrem (drenáž hrází, odstranění hrází, plašení, odlov do pastí nebo odlov obtížných jedinců, atd.).

6.7.3. Legislativa a opatření absentující

Vzhledem ke stávající právní úpravě, neumožňující zařadit bobra mezi druhy zvěře, které lze obhospodařovat lovem, se jeví jako nutné řešit následující již známé problémy:

a) Věcně a legislativně řešit náhradu škod podmáčením nebo zaplavením lesních porostů
b) Věcně a legislativně řešit náhradu škod podmáčením a zaplavením zemědělských kultur
c) Věcně a legislativně řešit náhradu škod na vodohospodářských stavbách
d) Věcně a legislativně řešit náhradu škod vzniklých na mechanizaci a vozidlech najetím do nory
e) Věcně a legislativně řešit dotace na preventivní ekologická opatření snižující riziko vzniku škod (úprava břehových porostů)
f) Věcně a legislativně řešit dotace na ekotechnická opatření snižující riziko škod na lesních porostech (podpora zesílené individuální ochrany kostry porostu a oplocenek)
g) Věcně a legislativně řešit dotace na ekotechnická opatření snižující riziko škod na zemědělských kulturách (elektrické ohradníky)

h) Věcně a legislativně řešit dotace na dodatečná konstrukční opatření, snižující riziko škod na existujících vodohospodářských dílech (sítě umístěné do břehů a hrází, atd.). Zde se bude jednat o významné finanční náklady.

j) Věcně a legislativně řešit dotace na konstrukční opatření při stavbě nových vodohospodářských děl (sítě umístěné do břehů a hrází, atd.)

6.7.4. Náhrada škod vzniklých na nesklizených polních plodinách a trvalých porostech činností bobra evropského

Za splnění zákonných podmínek lze hradit škodu prokazatelně způsobenou na území ČR bobrem evropským na:
- nesklizených polních plodinách, přičemž se náhrada neposkytuje, pokud nebyly sklizeny v agrotechnických lhůtách obvyklých pro dané území (pokud ale polní plodiny nebyly sklizeny v agrotechnické lhůtě z důvodů hodných zřetele, např. z důvodu ochrany přírody, náhrada škody se poskytne),
- trvalých porostech.

Kompetence a způsob uplatňování žádostí o náhradu škody:

Od roku 2003 jsou k vyřizování žádostí o náhradu škod kompetentní příslušné krajské úřady podle místa, kde ke škodě došlo, nebo Magistrát hlavního města Prahy. Poškozený zároveň hlásí vzniklou škodu do 48 hodin od jejího zjištění místním příslušném orgánu ochrany přírody, a to podle místa, kde ke škodě došlo (na území CHKO a národních parků jsou to správy CHKO nebo národních parků, ve volné krajině obecní úřady obcí s rozšířenou působností). Órgán ochrany přírody prohlášení provádí neprodleně místní šetření, sepíše protokol a zajistí důkazy. Podklady předá příslušnému krajskému úřadu či Magistrátu města Prahy.

zpracovateli posudků a pracovníky krajských úřadů připravila metodiky, které stanovují jednotný způsob výpočtu náhrady škod, které způsobili chránění živočichové. Tyto metodiky jsou k dispozici na stránkách AOPK ČR, v sekci Odborná činnost, Druhová ochrana. Bohužel metodika sjednocující výpočet škod bobrem nebyla doposud vypracována.

Žádost o poskytnutí náhrady škod obsahuje následující údaje:
- jméno, příjmení, rodné číslo a trvalý pobyt žadatele (poškozeného), je-li jím fyzická osoba,
- název, sídlo a identifikační číslo žadatele (poškozeného), je-li jím právnická osoba,
- popis příčin škody a uvedení rozsahu škody,
- označení vybraného živočicha, který podle poznatků žadatele škodu způsobil,
- popis opatření žadatele (poškozeného), které učinil k zabránění vzniku škody,
- způsob poskytnutí náhrady škody (např. převedením finančních prostředků na účet poškozeného u penežního ústavu, výplatou peněžní částky v hotovosti v pokladně příslušného orgánu, zaslání peněžní částky poštovní poukázkou na adresu poškozeného).

K žádosti o náhradu škody žadatel (poškozený) připojuje:
- doklad o vlastnickém právu nebo jiném právu k vlastnictví a jeho příslušnému území, respektive existence sídla žadatele (poškozeného), které účinně vybraného živočicha za uplynulé, šestiměsíční období, nelze tento postup podle zákona o náhradách škod využít například pro trvale zaplavené a nezamokřené pozemky.

(Zpracováno podle TOMÁŠKOVÁ, 2009 a ŠULGAN, BARTOŠOVÁ, 2007)

6.7.5. Návrh řešení újmy vzniklé projevem trvalé přítomnosti respektive existence sídla bobra evropského na stanovišti

a způsob poskytování náhrady, neřeší postup při vzniku újmy na orné půdě (respektive speciální kultuře) je možno v tomto případě postupovat podle obecného ustanovení § 4, odst. 4 zmíněné vyhlášky (jiná omezení zemědělského hospodaření). To lze doložit údaji o průměrných hektarových výnosech, doklady o cenách atd.

V případě lesních porostů se stanoví výše újmy podle vyhlášky č. 55/1999 Sb., o způsobu výpočtu výše újmy nebo škody způsobené na lesích.

(Zpracováno dle rozhodnutí KÚ Jihomoravského kraje 2009)

6.7.6. Snížení stavů zvěře a zrušení jejího chovu – bobr evropský

V případě žádosti o snížení stavů bobra evropského (odlov odstřelem, odlov odchytem) se majitel nebo nájemce honitby obrací dle § 39 zákona č. 449/2001 Sb., o myslivosti na orgán státní správy myslivosti (obec s rozšířenou působností).

Vyžaduje-li zájem vlastníka, popřípadě nájemce honebních pozemků se stanoví výše újmy podle vyhlášky č. 55/1999 Sb., o způsobu výpočtu výše újmy nebo škody způsobené na lesích.

(Výjimku vydává územně příslušný orgán ochrany přírody (krajský úřad, správa CHKO popř. NP). V případě bobra evropského lze výjimku povolit v případech uvedených v § 56 odst. 2, tj.:

a) v zájmu ochrany volně žijících živočichů, planě rostoucích rostlin a ochrany přírodních stanovišť,

b) v zájmu prevence závažných škod, zejména na úrodi, dobytku, lesích, rybolovu, vodách a ostatních typech majetku,

c) v zájmu veřejného zdraví nebo veřejné bezpečnosti nebo z jiných naléhavých důvodů převažujícího veřejného zájmu, včetně důvodů sociálního a ekonomického charakteru a důvodů s příznivými důsledky nesporného významu pro životní prostředí.

Státní správa myslivostí potom rozhodnutím povolí lov (dle § 39 zákona o myslivosti). Jedná se o shodný postup jako v případě odlovu kormorána, který je v praxi běžně využíván.

6.7.7. Řešení možnosti zásahu do biotopu chráněného druhu

Přeřazení bobra z kategorie kriticky ohrožený druh do kategorie ochrany silně ohrožený druh nemnění postup při žádosti o zásah do jeho biotopu. To se týká např. manipulace s vodní hladinou v místech výskytu bobra či zprůtočnění bobří hraze.
Hospodářský subjekt, na jehož majetku vzniká škoda nebo újma činností nebo přítomností bobra, podává žádost na kompetentní orgán ochrany přírody, kterým je podle územní příslušnosti správa národního parku, správa chráněné krajinné oblasti, Újezdní úřad (Ministerstvo obrany) a ve volné krajině příslušný krajský úřad.

Výjimka ze zákazu zásahu do biotopu chráněného druhu je vydávána na základě § 56, zákona č. 114/1992 Sb., o ochraně přírody a krajiny v platném znění.
7. ZÁVĚRY A DISKUSE

- Zjištěná vzdálenost podél vodního toku, kterou bobři využívali, byla v průměru do 24,5 m (max. 100 m). Uvedený výsledek je v dobré shodě s řadou dalších autorů: ZAHNER (1998) doporučuje bufferovou zónu 10 m, což je polovina zóny, kterou doporučují VALACHOVIČ a GÍMEŠ (2003); SCHWAB (1992) konstatoval, že 90 % škod vzniká do 20 m od břehu, atd.

Délka břehu toku, kterou využívala jedna rodina bobrů, byla 213 m (max. 580 m). ALLGOWER (2002) stanovuje pro tuto charakteristiku hranice 1 000 – 5 000 m, WEINZIERL, FROBEL (1998) citují pro různé autory následující, diferencované hodnoty: 150 – 700 m, 40 – 3 000 m, a 70-1 400 m. Je tedy zřejmé, že zjištěné hodnoty jsou shodné s literárními údaji, avšak leží spíše poniží jejich dolní hranici.

- Nejsilněji je vznik škod na porostech vázán na přítomnost hradu (100 %) a skluzu (83,2 %). Uvedený údaj nebyl v dostupné literatuře formulován, avšak logicky vyplývá z jiných šetření.

- Relativně nejvyšší shoda stanovištních nároků byla zjištěna u bobra a skokana skřehotavého (0,27), chřástala kropenatého (0,26) skokana krátkonohého (0,24) a sluky lesní (0,19). Prověření ekologických nároků a stanovení bioindikačních druhů pro bobra nebylo v literatuře nalezeno.

- Na základě posouzení stabilizovaných areálů druhů s podobnými stanovištními nároky jako má bobr lze předpokládat, že vhodné stanovištní podmínky, které budou bobrem osídleny, se nachází podél vodního toku. Počátek intenzívní exploatace dřevinného patra bobrem byl stanoven na první dekádu října. Uvedený údaj je srovnatelný s literárními daty, VALACHOVIČ, GÍMEŠ (2003) však uvádějí kácení stromů ještě v dubnu.

- Potvrdil se vliv bobra na morfologii stanovišť a byla stanovena jeho intenzita. V horizontu 15 let se zvýšilo zastoupení vodní plochy v rámci 50 m bufferu podél toků o 176,4 %. Jednalo se v podstatě o ověření možnosti využití leteckých snímků pro hodnocení vlivu bobra na stanoviště. Byla potvrzena hypotéza o působení bobra na morfologii prostředí a jednotlivé složky stanoviště. Výsledky odpovídají poznatkům z oblasti Quebecu, kde neregulovaná populace bobrů ovlivňuje 30-50 % celkové délky toků o šířce 1-15 m. V Minnesota vzrostla plocha rybníků a luk z 1 % na 13 % krajiny. Naopak v Norsku bylo zjištěno zaplavení 0,2 % stanovišť.
• Na základě realizovaných šetření byly vytípovány nejdůležitější stanovištní charakteristiky určující porosty ohrožené bobrem (průměrná kmene, bylinné patro, křovinné patro, atd.). Definované stanovištní charakteristiky nejsou v neshodě s žádným z dostupných literárních pramenů. Uváděná ště vodního toku (3 + m) je spíše dolním limitem.

• V celkovém hodnoceném souboru druhů dřevin poškozovaných borem se vyskytovalo 40 % topol, 16 % vrb, 12 % jasanu, 24 % dubu, 3 % jilmu, 3 % olše, 1 % břez, 1 % osiky. Na jiných lokalitách však bylo zjištěno například i intenzivní poškozování borovic. Uvedené výsledky odpovídají řadě literárních údajů a realizovaná terénní šetření potvrzují i hypotézu řady autorů o tom, že potravní spektrum bobra z hlediska druhů dřevin je velmi široké a je výrazně ovlivňováno nabídkou. Nelze tedy souhlasit s jednoznačným tvrzením VALACHOVIČE, GÍMEŠE (2003), kteří uvádějí, že ochrana dubu se vyskytuje sporadicky. Například ZUPPKE (1995) uvádí následující spektrum káčivých druhů: 40 % topol, 16 % vrb, 12 % jasanu, 24 % dubu, 3 % jilmu, 3 % olše, 1 % břez, 1 % osiky.

• Byla připravena, ověřena a realizována metodika vyhledávání rizikových porostů z hlediska potenciálních škod bobrem. Pro mapování a hodnocení výskytu bobra a jeho pobytového průběhu na stanovištích existuje řada exaktních metodik. Cílem měly být načrty pokud možno nejjednodušší postup použitelný bez většího pracovního zatížení v praxi, proto bylo použito pouze tři stupňové hodnocení.

• Lze konstatovat, že populační exploze bobra není zbržděna, jak ukazovaly některé údaje z roku 2007. V roce 2003 pokryval areál bobra 7,56 % výměry ČR, v roce 2008 to bylo již 25,49 %. SIEBER (2002) zjišťovali nárous populace introdokovaných 45 ks bobrů v prvních deseti letech na 100-150, to je o 122 %. Některé údaje z Bavorska naopak ukazují na výrazně pomalejší populace introdukovaných, než která byla vypočtena pro naše podmínky.

• Byly konstruovány prognostické křivky, které umožňují odhadovat vývoj četnosti populací bobrů v nějjižších letech. Pro naše podmínky konstruovaná exponenciálně prognostická křivka zřejmě dobře charakterizuje očekávaný vývoj populace, v návaznosti pak i vývoj škod v ČR.

• Podle realizovaných analýz nejsou ani stanoviště jižní Moravy (povodí Moravy), s nejvyšší denzitou bobrů v ČR, nasycena. Přes to, že dochází k prostorové expansi jihomoravské populace, je skutečnost, že odhadované počty v řadě honitb stále ještě narůstají. Narůstají i počty v rámci oblastí.

• Na základě realizovaných testů lze konstatovat, že účinnost nátěrových a pachových repelentů je diferencována, avšak ani jeden z testovaných přípravků nelze praxi doporučit jako vysoce účinný. Závěr potvrzuje i testy jiných druhů repelentů v zahradních. Bobří se ošetřeným stromem vyhýbají jen v určitých obdobích a v případě ošetření všech jedinců v porostu opatření zcela selhává. ROULAND (1993) uvádí, že repelentní přípravky umožňují dočasnou ochranu kultur, stejně jako další autoři.

Příkrnování bobrů je možné, avšak praktické využití je diskutabilní. Získané výsledky nejsou v rozporu s žádným z literárních pramenů.

Návrh vzorového managementu prostředí a populace bobrů v modelové oblasti Tvrdovice. Návrh vzorového managementu v modelovém území je významnou částí zadání úkolu a vychází z věškerých předchozích výsledků. Spočívá:
- v monitoringu počátečních stadií škod,
- ve včasné eliminaci škod mechanickými opatřeními,
- v doporučení snižování denzity jedinců na stanovišťích a eliminaci obtížných jedinců.

Zjednodušený (třístupňový) způsob hodnocení intenzity rizika vzniku nebo nárůstu škod, není v rozporu s žádnými publikovanými pracemi, byl konstruován tak, aby byl využitelný v praxi, stejně jako vícestupňový algoritmus - nástroj pro hodnocení rizikových porostů. V projektu je uplatněna mechanická ochrana (individuální a skupinová ochrana stromů, atd.) různých forem. Dle vlastních šetření i všech zahraničních autorů, kteří problém řešili, se tato opatření ukázala jako jediná vysoce funkční.

V projektu nemohla být uplatněna opatření redukující počet zvířat na rizikových stanovištích a eliminace obtížných jedinců (odchýtem živých jedinců nebo odlovem), které však perspektivně doporučujeme stejně jako PARKER a ROSELL (2003). Uvedení norští autoři doporučují snižování stavu bobrů na vybraných stanovištích právě těm evropským zemín, které nemají s managementem populace bobrů zkušeností. Toto doporučení je v rozporu s tvrzením VALACHOVÁ a GÍMEŠE (2003), že skandinávští a američtí lidé zjistili, že odstranění jednoho nebo více jedinců často zapříčiní explozi v rozmnожování a migrace (zdroj autorů neuvádí). Skutečnost je, že skandinávský management populace bobrů vyžaduje kromě jiného i lovu. Tato skutečnost je významná i ve vztahu k místnímu obyvatelstvu a do jisté míry eliminuje nebezpečí nelegálního lovu, který by mohl hrozit při totálním hájení druhu.

V projektu nebylo zařazeno zabezpečení nárazníkových zón podél vodních toků, vyčleněných v šířce 20 - 50 m, pro stanoviště úpravy bobrů vstřícené. Jedná se o nákladná opatření, která obecně zvyšují kvalitu prostředí a stanoviště nejen bobra, což je pozitivní. Na druhé straně není tento přístup v zemích s tradičně silnými populacemi bobrů uplatňován a řada autorů uvádí velkou stanovištění plasticitu bobrů (i ve vztahu k antropogenní krajíně). Na základě hodnocení populační dynamiky bobrů v ČR je zřejmé, že v rámci celého státu existují vhodné lokality umožňující jeho kontinuální osídlení druhem.

Legislativní řešení problému
Legislativní řešení problému spočívá jednak v dořešení kompetenčních záležitostí mezi MZe a MŽP a nalezení prostředků pro řešení problému.
8. PŘÍLOHY

Příloha č. 1
Harmonizace vztahu populace bobra evropského a stavu prostředí – legislativní rámec

1. Legislativní prostředí problému v současnosti

Národní legislativa ochrany bobra evropského vychází z evropského legislativního rámce. Jedná se o:

Směrnice Rady č. 92/43/EHS z 21. května 1992 o ochraně přírodních stanovišť, volně žijících živočichů a planě rostoucích rostlin

V citované směrnici je bobr evropský zařazen do Přílohy II a Přílohy IV, čímž je definován stupeň jeho ochrany na úrovni EU.

Příloha II: Druhy živočichů a rostlin v zájmu Společenství, jejichž ochrana vyžaduje vyhlášení zvláštních území ochrany

„a) ŽIVOČICHOVÉ

OBRATLOVCI
Savci
Hlodavci
Bobrovití (Castoridae)

Bobr evropský (Castor fiber) – s výjimkou populací finských, švédských a pobaltských zemí.

Příloha IV: Druhy živočichů a rostlin v zájmu Společenství, vyžadující přísnou ochranu

a) ŽIVOČICH NOVÉ

OBRATLOVCI
Savci
Hlodavci
Bobrovití (Castoridae)
Bobr evropský (Castor fiber)“

Legislativa v rámci ČR

Dlouhodobě podcházející škody bobrem evropským vyvolává nesouzenou, však ohromnou ekonomickou újmu, často takto řešená způsobuje státní náhradu škody bobrem, kterou však většina zemědělců a lesních majitelů nedoplatila. Odporučením vedení je nezbytné podporovat důležité státní provozy do zvěře, které můžou zcela efektivně podporovat hledání a likvidaci škod bobrem, které způsobují obrovské škody.
4.2. Ekologická opatření se speciálním legislativním režimem – porušování a likvidace

4.2.1. V zákoně č. 449/2001 Sb., ve znění pozdějších předpisů, se uvádí:

„Část první
Obecná ustanovení
§ 2
Vymezení pojmů

Pro účely tohoto zákona se rozumí
b) zvěří se rozumí přírodní bohatství představované populacemi druhů volně žijících živočichů uvedených v písmenech c) a d).
c) druhy zvěře, které nelze loviti podle mezinárodních úmluv, jimiž je Česká republika vázána a které byly vyhlášeny ve sbírce zákonních nebo ve sbírce mezinárodních smluv, nebo druhy zvěře, které jsou zvláště chráněnymi živočichy podle zvláštních právních předpisů 3) a nebyly-li k jejich lovu povolena výjimka podle těchto předpisů:
- savci: bobr evropský (Castor fiber), kočka dívoká (Felis silvestris), los evropský (Alces alces), medvěd hnědý (Ursus arctos), rys ostrovid (Lynx lynx), vlk euroasijský (Canis lupus), vydra říční (Lutra lutra),

4.2.2. Dále se v **zákoně o myslivosti č.449/2001 Sb.**, uvádí:

"Část čtvrtá
Tvorba a využívání honiteb
Hiava III
Povolení lovu ve zvláštíných případech
§ 39
Snížení stavů zvěře a zrušení jejího chovu"

Vyžaduje-li zájem vlastníka, popřípadě nájemce hovených pozemků nebo zájem zemědělského nebo lesního výrobu, ochrany přírody, nebo zájem mysloveckého hospodaření, aby počet některého druhu zvěře byl snížen, orgán státní správy myslivosti povolí, popřípadě uloží uživateli honitby příslušnou úpravu stavu zvěře (ve správním řízení pozn. autora). Nelze-li škody působené zvěří snížit technicky přiměřenými a ekonomicky úspornými způsoby, uloží orgán státní správy myslivosti na návrh vlastníka, popřípadě nájemce hovených pozemků nebo na návrh orgánu ochrany přírody nebo orgánu státní správy lesa snížení stavu zvěře až na minimální stav, popřípadě zruší chov druhu zvěře, který škody působí."

4.2.3. **Zákon č. 114/1992 Sb., o ochraně přírody a krajiny**, ve znění pozdějších předpisů:

"ČÁST DRUHÁ
Obecná ochrana přírody a krajiny
§ 5
Obecná ochrana rostlin a živočichů"

(1) Všechny druhy rostlin a živočichů jsou chráněny před zničením, poškozováním, sběrem či odchycením, který vede nebo by mohl vést k ohrožení těchto druhů na bytí nebo k jejich degeneraci, k narušení rozmnožovacích schopností druhů, zániku populace druhů nebo zničení ekosystému, jehož jsou součástí. Při porušení těchto podmínek ochrany je orgán ochrany přírody oprávněn zakázat nebo omezit rušivou činnost.

(2) Ochrana podle odstavce 1 se nevztahuje na zásahy při hubení rostlin a živočichů upravené zvláštními předpisy. 4) Ohrožené nebo vzácné druhy živočichů a rostlin jsou zvláště chráněny podle § 48 až 50 tohoto zákona.

(3) Fyzické a právnické osoby jsou povinny při provádění zemědělských, lesnických a stavebních prací, při vodohospodářských úpravách, v dopravě a energetice postupovat tak, aby nedocházelo k nadměrnému úhynu rostlin a zralování nebo úhynu živočichů nebo ničení jejich biotopů, kterému lze zabránit technicky i ekonomicky dostupnými prostředky. Orgán ochrany přírody uloží zajištění či použití takovýchto prostředků, neučiní-li tak povinná osoba sama."

§ 48
Zvláště chráněné rostliny a živočichové
(1) Druhy rostlin a živočichů, které jsou ohrožené nebo vzácné, vědecky či kulturně velmi významné, lze vyhlásit za zvláště chráněné.

(2) Zvláště chráněné druhy rostlin a živočichů se dle stupně jejich ohrožení člení na:
 a) kriticky ohrožené,
 b) silně ohrožené,
 c) ohrožené.

(3) Seznam a stupeň ohrožení zvláště chráněných druhů rostlin a živočichů podle odstavců 1 a 2 stanoví ministerstvo životního prostředí obecně závazným právním předpisem.

(4) Stejně jako zvláště chráněný živočich nebo zvláště chráněná rostlina je chráněn i mrtvý jedinec tohoto druhu, jeho část nebo výrobek z něho, u něhož je patrné z průvodního dokumentu, obalu, značky, etikety nebo z jiných okolností, že je vyroben z částí takového živočicha nebo rostliny.

(5) Ministerstvo životního prostředí stanoví prováděcím právním předpisem způsob hodnocení stavu zvláště chráněných druhů a jejich stanoviště v hledisku evropsky významných druhů z hlediska jejich ochrany.

§ 50
Základní podmínky ochrany zvláště chráněných živočichů

(1) Zvláště chránění živočichové jsou chránění ve všech svých vývojových stádiích. Chráněna jsou jimi užívaná přirozená i umělá sídla a jejich biotop. Vybrané živočichy, které jsou chráněni i uhynulí, stanoví ministerstvo životního prostředí obecně závazným právním předpisem.

(2) Je zakázáno škodlivě zasahovat do přirozeného vývoje zvláště chráněných živočichů, zejména je chytat, chovat v zajetí, rušit, zraňovat nebo usmrcovat. Není dovoleno sbírat, ničit, poškozovat či přemístit jejich vývojová stádia nebo jimi užívaná sídla. Je též zakázáno je držet, chovat, dopravovat, prodávat, vyměňovat, nabízet za účelem prodeje nebo výměny.

(3) Ochrana podle tohoto zákona se nevztahuje na případy, kdy je zásah do přirozeného vývoje zvláště chráněných živočichů prokazatelně nezbytný v důsledku běžného obhospodařování nemovitostí nebo jiného majetku nebo z důvodů hygienických, ochrany veřejného zdraví a veřejné bezpečnosti anebo leteckého provozu. V těchto případech je ke způsobu a době zásahu nutné předchozí stanovisko orgánu ochrany přírody, pokud nejde o naléhavý zásah z hlediska veřejného zdraví a veřejné bezpečnosti nebo bezpečnosti leteckého provozu. V tomto stanovisku orgán ochrany přírody může uložit náhradní ochranné opatření, například záchranný přenos živočichů.

(4) Ustanovení odstavce 3 neplatí pro druhy silně a kriticky ohrožené.

(5) Blížší podmínky ochrany zvláště chráněných živočichů, zejména pokud se jedná o zoologické zahrady, záchranné chovy, péči o zraněné živočichy a oprávnění k preparaci uhynulých živočichů stanoví ministerstvo životního prostředí obecně závazným právním předpisem.
(6) Opatření přijímaná na základě tohoto zákona musí brát v úvahu hospodářské, sociální a kulturní požadavky, regionální a místní zvláštnosti.

§ 56

Výjimky ze zákazů u památných stromů a zvláště chráněných druhů rostlin a živočichů

(1) Výjimky ze zákazů u památných stromů a zvláště chráněných druhů rostlin a živočichů podle § 46 odst. 2, § 49 a 50 v případech, kdy jiný veřejný zájem převažuje nad zájmem ochrany přírody, nebo v zájmu ochrany přírody, povoluje orgán ochrany přírody. U zvláště chráněných druhů rostlin a živočichů, které jsou předmětem ochrany podle práva Evropských společenství 10), lze výjimku podle věty první povolit jen tehdy, pokud je dán některý z důvodů uvedených v odstavci 2, neexistuje jiné uspokojivé řešení a povolovaná činnost neovlivní dosažení či udržení příznivého stavu druhu z hlediska ochrany.

(2) Výjimku ze zákazů u zvláště chráněných druhů rostlin a živočichů lze povolit
a) v zájmu ochrany volně žijících živočichů a planě rostoucích rostlin a ochrany přírodních stanovišť,
b) v zájmu prevence závažných škod, zejména na úrodu, dobytku, lesích, rybolovu, vodách a ostatních typech majetku,
c) v zájmu veřejného zdraví nebo veřejné bezpečnosti nebo z jiných naléhavých důvodů převažujícího veřejného zájmu, včetně důvodů sociálního a ekonomického charakteru a důvodů s příznivými důsledky nesporného významu pro životní prostředí,
d) pro účely výzkumu a vzdělávání, opětovného osídlení určitého území populací druhu nebo opětovného vysazení v původním areálu druhu a chovu a pěstování nezbytných pro tyto účely, včetně umělého rozmnožování rostlin,
e) v případě zvláště chráněných druhů ptáků pro odchyt, držení nebo jiné využívání ptáků v malém množství.

(3) Orgán ochrany přírody v rozhodnutí o výjimce může stanovit povinnost označení živočícha zvláště chráněného druhu nezaměnitelnou a trvalou značkou a rovněž podmínky pro výkon povolované činnosti.

(4) Orgán ochrany přírody může povolit výjimku, která se týká blíže neurčeného okruhu osob, při splnění podmínek uvedených v odstavcích 1 a 2 povolit též opatřením obecné povahy.

(5) K zajišťování činností podle odstavce 2 písm. a) a d) mohou orgány ochrany přírody v zájmu ochrany přírody uzavírat dohody s fyzickými nebo právnickými osobami. Dohodu lze uzavřít jen, pokud neexistuje jiné uspokojivé řešení, navrhovaná činnost neovlivní dosažení nebo udržení příznivého stavu druhu z hlediska ochrany a tyto odůvodněné skutečnosti jsou u dohodě výslovně uvedeny. Tato dohoda nahrazuje výjimku podle odstavek 1.

(6) Pro orgány ochrany přírody platí při povolení výjimky ze zákazů u zvláště chráněných druhů rostlin a živočichů nebo uzavření dohody podle odstavce 5 a § 49 odst. 4 informační povinnost stanovená v § 5b odst. 5. V případě povolení výjimky ze zákazů u zvláště chráněných druhů ptáků pro obsah rozhodnutí, obsah opatření obecné povahy a pro obsah dohody podle odstavce 5 platí obdobně § 5b odst. 3.“
9. SEZNAM LITERATURY

FICEK, A.: Výskyt bobra evropského (Castor fiber L. 1758) v České republice na počátku třetího milénia, Folia venatoria, 33, 2003, s. 87-96.

KOSTKAN, V.: Ekologická nika bobra evropského (Castor fiber L.1758) v Chráněné krajině oblasti Litovelské Pomoraví, PF UK Olomouc, 2000, 101 s.

KUDRNA, O.: Kommentierter Verbreitungsatlas der Tagfalter Tschechiens, Oedippus 8,1994, 137 s.

